Most time lapse microscopy experiments studying bacterial processes ie growth, progression through the cell cycle and motility have been performed on thin nutrient agar pads. An important limitation of this approach is that dynamic perturbations of the experimental conditions cannot be easily performed. In eukaryotic cell biology, fluidic approaches have been largely used to study the impact of rapid environmental perturbations on live cells and in real time. However, all these approaches are not easily applicable to bacterial cells because the substrata are in all cases specific and also because microfluidics nanotechnology requires a complex lithography for the study of micrometer sized bacterial cells. In fact, in many cases agar is the experimental solid substratum on which bacteria can move or even grow. For these reasons, we designed a novel hybrid micro fluidic device that combines a thin agar pad and a custom flow chamber. By studying several examples, we show that this system allows real time analysis of a broad array of biological processes such as growth, development and motility. Thus, the flow chamber system will be an essential tool to study any process that take place on an agar surface at the single cell level.
Magnetotactic bacteria (MTB) have the unique capacity to align and swim along the geomagnetic field lines downward to the oxic-anoxic interface in chemically stratified water columns and sediments. They are most abundant within the first few centimetres of sediments below the water-sediment interface. It is unknown how MTB penetrate into the sediment layer and swim in the pocket water, while their movements are restricted by the alignment along the magnetic field lines. Here we characterized the swimming behaviour of the marine fast-swimming magnetotactic ovoid bacterium MO-1.We found that it rotates around and translates along its short body axis to the magnetic north (northward). MO-1 cells swim forward constantly for a minimum of 1770 μm without apparent stopping. When encountering obstacles, MO-1 cells squeeze through or swim southward to circumvent the obstacles. The distance of southward swimming is short and inversely proportional to the magnetic field strength. Using a magnetic shielding device, we provide direct evidence that magnetotaxis is beneficial to MO-1 growth and becomes essential at low cell density. Environmental implications of the fast-swimming magnetotactic behaviour of magnetococci are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.