Se is an essential micronutrient required for normal growth, development and antioxidant defence. The objective of the present study was to assess the impact of dietary Se sources and levels on the antioxidant status of rainbow trout (Oncorhynchus mykiss) fry. First-feeding fry (initial body weight: 91 mg) were fed either a plant-or fishmeal-based diet containing 0·5 or 1·2 mg Se/kg diet supplemented or not with 0·3 mg Se/kg diet supplied as Se-enriched yeast or sodium selenite for 12 weeks at 178C. Growth and survival of rainbow trout fry were not significantly affected by dietary Se sources and levels. Whole-body Se was raised by both Se sources and to a greater extent by Se-yeast. The reduced:oxidised glutathione ratio was raised by Se-yeast, whereas other lipid peroxidation markers were not affected by dietary Se. Whole-body Se-dependent glutathione peroxidase (GPX) activity was enhanced in fish fed Se-yeast compared to fish fed sodium selenite or non-supplemented diets. Activity and gene expression of this enzyme as well as gene expression of selenoprotein P (SelP) were reduced in fish fed the non-supplemented plant-based diet. Catalase, glutamate -cysteine ligase and nuclear factor-erythroid 2-related factor 2 (Nrf2) gene expressions were reduced by Se-yeast. These results suggest the necessity to supplement plant-based diets with Se for rainbow trout fry, and highlight the superiority of organic form of Se to fulfil the dietary Se requirement and sustain the antioxidant status of fish. GPX and SelP expression proved to be good markers of Se status in fish.Key words: Selenium: Oxidative stress: Glutathione peroxidase: Rainbow trout fry Se is an essential micronutrient for animals and humans required for normal growth and development (1,2) . This role is attributed to low molecular weight Se compounds, as well as to the presence of Se within proteins and enzymes, named selenoproteins, in the form of the amino acid selenocysteine. Mammals have at least twenty-five selenoproteins, and fish probably more than thirty-two, although the functions of many selenoproteins are not yet elucidated (3,4) . Selenoproteins are involved in diverse physiological functions such as antioxidant defence, reduction of inflammation, thyroid hormone production, DNA synthesis, fertility and reproduction (1) . As a component of glutathione peroxidases (GPX), thioredoxin reductases (TR), and methionine sulphoxide reductases (MSR), Se plays, in particular, a pivotal role against oxidative cellular injury and lipid peroxidation. GPX can reduce H 2 O 2 and organic hydroperoxides to the corresponding alcohols with oxidation of glutathione to glutathione disulphide (5) . Seven GPX have been described in mammals, five of which are selenoproteins (2) . The GPX selenoproteins include the ubiquitously expressed cytosolic GPX1, a gastrointestinal-specific enzyme GPX2, a secreted protein found in plasma GPX3, a ubiquitously expressed enzyme that acts on oxidised lipids named * Corresponding author: S. Fontagné-Dicharry, fax þ33 55954515...