Preterm birth disrupts the in utero environment, preventing the brain from fully developing, thereby causing later cognitive and behavioral disorders. Such cerebral alteration occurs beneath an anatomical scale, and is therefore undetectable by conventional imagery. Prematurity impairs the microstructure and thus the histological process responsible for the maturation, including the myelination. Cerebral MRI diffusion tensor imaging sequences, based on water’s motion into the brain, allows a representation of this maturation process. Similarly, the brain’s connections become disorganized. The connectome gathers structural and anatomical white matter fibers, as well as functional networks referring to remote brain regions connected one over another. Structural and functional connectivity is illustrated by tractography and functional MRI, respectively. Their organizations consist of core nodes connected by edges. This basic distribution is already established in the fetal brain. It evolves greatly over time but is compromised by prematurity. Finally, cerebral plasticity is nurtured by a lifetime experience at microstructural and macrostructural scales. A preterm birth causes a negative and early disruption, though it can be partly mitigated by positive stimuli based on developmental neonatal care.
Background: Brain magnetic resonance imaging (MRI) is a key tool for the prognostication of encephalic newborns in the context of hypoxic−ischemic events. The purpose of this study was to finely characterize brain injuries in this context. Methods: We provided a complete, descriptive analysis of the brain MRIs of infants included in the French national, multicentric cohort LyTONEPAL. Results: Among 794 eligible infants, 520 (65.5%) with MRI before 12 days of life, grade II or III encephalopathy and gestational age ≥36 weeks were included. Half of the population had a brain injury (52.4%); MRIs were acquired before 6 days of life among 247 (47.5%) newborns. The basal ganglia (BGT), white matter (WM) and cortex were the three predominant sites of injuries, affecting 33.8% (n = 171), 33.5% (n = 166) and 25.6% (n = 128) of participants, respectively. The thalamus and the periventricular WM were the predominant sublocations. The BGT, posterior limb internal capsule, brainstem and cortical injuries appeared more frequently in the early MRI group than in the late MRI group. Conclusion: This study described an overview of brain injuries in hypoxic−ischemic neonatal encephalopathy. The basal ganglia with the thalamus and the WM with periventricular sublocation injuries were predominant. Comprehensive identification of brain injuries in the context of HIE may provide insight into the mechanism and time of occurrence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.