Muscular injury is one of the major problems facing today's athletes, both recreational and professional. Injuries to skeletal muscle represent >30% of the injuries seen in sports medicine clinics. As a result, it is imperative to utilise the most effective means to aid in deterring these injuries. However, there are conflicting opinions regarding methods of reducing muscular injury through warm-up and stretching techniques.Therefore, the purpose of this article is to examine the potential of a warm-up and/or stretching routine in deterring muscular injury during physical activity. The article examines a variety of studies regarding warm-up, stretching and muscular injury. The article also provides a definition of warm-up and stretching to provide clarity on this topic. Many of the differences within previous research were due to conflicting definitions. We also address this issue by examining research on muscular injury and physical adaptations to muscular injury and training. This article provides contradictory evidence to conclusions that have been drawn in previous review articles, which determined that warm-up and/or stretching protocols did not deter injury. The research included here conveys that certain techniques and protocols have shown a positive outcome on deterring injuries. As a result, a warm-up and stretching protocol should be implemented prior to physical activity. The routine should allow the stretching protocol to occur within the 15 minutes immediately prior to the activity in order to receive the most benefit. In addition, current information regarding improvements in flexibility is reviewed.
The aim of this study was to develop and test the practical utility of a perceived recovery status (PRS) scale. Sixteen volunteers (8 men, 8 women) performed 4 bouts of high-intensity intermittent sprint exercise. After completion of the baseline trial, in a repeated-measures design, subjects were given variable counterbalanced recovery periods of 24, 48, and 72 hours whereupon they repeated an identical intermittent exercise protocol. After a warm-up period, but before beginning each subsequent bout of intermittent sprinting, each individual provided their perceived level of recovery with a newly developed PRS scale. Similar to perceived exertion during exercise, PRS was based on subjective feelings. The utility of the PRS scale was assessed by measuring the level of agreement of an individual's perceived recovery relative to their performance during the exercise bout. Perceived recovery status and change (both positive and negative) in sprint performance during multiple bouts of repeated sprint exercise were moderately negative correlated (r = -0.63). Additionally, subjects were able to accurately assess level of recovery using the PRS scale indicated by correspondence with negative and positive changes in total sprint time relative to their previous session. The ability to detect changes in performance using a noninvasive psychobiological tool to identify differences in performance was independent of other psychological and physiological markers measured during testing, because there were no differences (p > 0.05) among ratings of perceived exertion (RPE), heart rate, blood lactate concentration, or session RPE values among any of the performance trials. Although further study is needed, current results indicate a subjective approach may be an effective means for assessing recovery from day to day, at least under similar conditions.
Athletes spend a much greater proportion of their time recovering than they do in training. Yet, much attention has been given to training with very little investigation of recovery. The purpose of this review is to stimulate further research into this vital area of training. Recovery can be categorized in three terms: i) immediate recovery between exertions; ii) short-term recovery between repeats (e.g., between resistance sets or interval bouts); and iii) training recovery between workouts. The focus of this review is training recovery. Full training recovery is essential to optimal performance and improvement. This review includes an examination of extant research on recovery and a very brief review of some potential modalities and techniques for hastening recovery and the time course of recovery and responses to some treatments. Measures of recovery and practical considerations are discussed briefly. Much research is needed in this area, but there are obstacles to high quality research. Attention must be given to key issues in research on recovery, especially the individual response to recovery treatments.
The purpose of this study was to evaluate the effects of 3 types of warm-up (WU) on swimming performance, reaction time, and dive distance. In repeated-measures counterbalanced design, National Collegiate Athletic Association Division I swimmers (n = 16) used 3 WUs before performing 50-yd (45.7-m) freestyle swim trials. The WU consisted of (a) no WU, (b) short WU (50-yd at 40% of swimmers' maximal effort and 50-yd at 90%), and (c) regular WU (usual precompetition WU). The mean 50-yd time was significantly faster (p = 0.01) after the regular WU (24.95 ± 1.53 seconds) when compared with that of the short WU (25.26 ± 1.61 seconds). However, individual data indicated that 19% of the participants performed their best in the 50-yd category after short, 37% after no, and 44% after regular WU. Heart rate was significantly higher (p = 0.01) after regular WU (100 ± 13 b·min(-1)) when compared with that of the no WU category (88 ± 18 b·min(-1)). However, no significant differences among WUs were found for reaction time (p = 0.96), rating of perceived exertion post 50-yd time trial (p = 0.11), dive distance (p = 0.67), or stroke count (p = 0.23). In conclusion, the average regular WU was better than short or noWU to achieve the fastest mean time in the 50-yd freestyle; however, some individual performances were faster after WUs different from their regular approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.