15 different antibiotics were individually mixed with commercially available calcium sulfate bone void filler beads. The antibiotics were: amikacin, ceftriaxone, cefuroxime, ciprofloxacin, clindamycin, colistamethate sodium, daptomycin, gentamicin, imipenem/cilastatin, meropenem, nafcillin, rifampicin, teicoplanin, tobramycin and vancomycin. The efficacy of specific released antibiotics was validated by zone of inhibition (ZOI) testing using a modified Kirby–Bauer disk diffusion method against common periprosthetic joint infection pathogens. With a subset of experiments (daptomycin, rifampin, vancomycin alone and rifampin and vancomycin in combination), we investigated how release varied over 15 days using a repeated ZOI assay. We also tested the ability of these beads to kill biofilms formed by Staphylococcus epidermidis 35984, a prolific biofilm former. The results suggested that certain antibiotics could be combined and released from calcium sulfate with retained antibacterial efficacy. The daptomycin and rifampin plus vancomycin beads showed antimicrobial efficacy for the full 15 days of testing and vancomycin in combination with rifampin prevented resistant mutants. In the biofilm killing assay, all of the antibiotic combinations showed a significant reduction in biofilm bacteria after 24 h. The exposure time was an important factor in the amount of killing, and varied among the antibiotics.
The aim of this study was to characterise the elution profiles of antibiotics in combination with pharmaceutical grade calcium sulphate beads in phosphate buffered saline and other physiological solutions which more closely mimic the in vivo environment. Synthetic recrystallised calcium sulphate was combined with vancomycin hydrochloride powder and tobramycin sulphate solution and the paste was formed into 3 mm diameter hemispherical beads. Then 2 g of beads were immersed in 2 ml of either phosphate buffered saline, Dulbecco's Modified Eagle Medium or Hartmann's solution and incubated at 37℃ for up to 21 days. At a range of time points, eluent was removed for analysis by liquid chromatography-mass spectrometry (LC-MS). Tobramycin sulphate and vancomycin hydrochloride release was successfully quantified against standard curves from solutions eluted in all three physiological media (phosphate buffered saline, Dulbecco's Modified Eagle Medium and Hartmann's solution) during incubation with calcium sulphate beads. One hour eluate concentrations were high, up to 2602 µg/ml for tobramycin in phosphate buffered saline and 7417 µg/ml for vancomycin, whereas in DMEM, the levels of tobramycin were 2458 µg/ml and 4401 µg/ml for vancomycin. The levels in HRT were 2354 µg/ml for tobramycin and 5948 µg/ml for vancomycin. The results show highest levels of antibiotic elution over the first 24 h, which gradually diminish over the following 21 days.
Background: Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA) are the major causative agents of acute and chronic infections. Antibiotic-loaded calcium sulfate beads (ALCSB) are used in the management of musculoskeletal infections such as periprosthetic joint infections (PJI). Methods: To determine whether the number and spatial distribution of ALCSB are important factors to totally eradicate biofilms, ALCSBs containing vancomycin and tobramycin were placed on 24 h agar lawn biofilms as a single bead in the center, or as 16 beads placed as four clusters of four, a ring around the edge and as a group in the center or 19 beads evenly across the plate. Bioluminescence was used to assess spatial metabolic activity in real time. Replica plating was used to assess viability. Results: For both strains antibiotics released from the beads completely killed biofilm bacteria in a zone immediately adjacent to each bead. However, for PA extended incubation revealed the emergence of resistant colony phenotypes between the zone of eradication and the background lawn. The rate of biofilm clearing was greater when the beads were distributed evenly over the plate. Conclusions: Both number and distribution pattern of ALCSB are important to ensure adequate coverage of antibiotics required to eradicate biofilms.
This study investigated the efficacy of a biphasic synthetic β-tricalcium phosphate/calcium sulfate (β-TCP/CS) bone graft substitute for compatibility with vancomycin (V) in combination with tobramycin (T) or gentamicin (G) evidenced by the duration of potency and the prevention and killing efficacies of P. aeruginosa (PAO1) and S. aureus (SAP231) biofilms in in vitro assays. Antibiotic loaded β-TCP/CS beads were compared with antibiotic loaded beads formed from a well characterized synthetic calcium sulfate (CS) bone void filler. β-TCP/CS antibiotic loaded showed antimicrobial potency against PAO1 in a repeated Kirby-Bauer like zone of inhibition assay for 6 days compared to 8 days for CS. However, both bead types showed potency against SAP231 for 40 days. Both formulations loaded with V + T completely prevented biofilm formation (CFU below detection limits) for the 3 days of the experiment with daily fresh inoculum challenges (P < 0.001). In addition, both antibiotic loaded materials and antibiotic combinations significantly reduced the bioburden of pre-grown biofilms by between 3 and 5 logs (P < 0.001) with V + G performing slightly better against PAO1 than V + T. Our data, combined with previous data on osteogenesis suggest that antibiotic loaded β-TCP/CS may have potential to stimulate osteogenesis through acting as a scaffold as well as simultaneously protecting against biofilm infection. Future in vivo experiments and clinical investigations are warranted to more comprehensively evaluate the use of β-TCP/CS in the management of orthopaedic infections.
Calcium sulfate (CS) has been used clinically as a bone or void filling biomaterial, and due to its resorptive properties have provided the prospect for its use as a release mechanism for local antibiotics to control biofilms. Here, we aimed to test CS beads loaded with three antifungal drugs against planktonic and sessile fungal species to assess whether these antifungal beads could be harnessed to provide consistent release of antifungals at biofilm inhibitive doses. A panel of different fungal species (n=15) were selected for planktonic broth microdilution testing with fluconazole (FLZ), amphotericin B (AMB) and caspofungin (CSP). After establishing planktonic inhibition, antifungal CS beads were introduced to fungal biofilms (n=5) to assess biofilm formation and cell viability through a combination of standard quantitative and qualitative biofilm assays. Inoculation of a hydrogel substrate, packed with antifungal CS beads, was also used to assess diffusion through a semi-dry material, to mimic active infection in-vivo. In general, antifungals released from CS loaded beads were all effective at inhibiting the pathogenic fungi over 7-days within standard MIC ranges for these fungi. We observed a significant reduction of pre-grown fungal biofilms across key fungal pathogens following treatment, with visually observable changes in cell morphology and biofilm coverage provided by scanning electron microscopy. Assessment of biofilm inhibition also revealed reductions in total and viable cells across all organisms tested. These data show that antifungal loaded CS beads produce a sustained antimicrobial effect, which inhibits and kills clinically relevant fungal species in-vitro as planktonic and biofilm cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.