Many photosynthetic bacteria use inorganic sulfur compounds as electron donors for carbon dioxide fixation. A thiosulfate-induced cytochrome c has been purified from the photosynthetic ␣-proteobacterium Rhodovulum sulfidophilum. This cytochrome c 551 is a heterodimer of a diheme 30-kDa SoxA subunit and a monoheme 15-kDa SoxX subunit. The cytochrome c 551 structural genes are part of an 11-gene sox locus. Sequence analysis suggests that the ligands to the heme iron in SoxX are a methionine and a histidine, while both SoxA hemes are predicted to have unusual cysteine-plus-histidine coordination. A soxA mutant strain is unable to grow photoautotrophically on or oxidize either thiosulfate or sulfide. Cytochrome c 551 is thus essential for the metabolism of both these sulfur species. Periplasmic extracts of wild-type R. sulfidophilum exhibit thiosulfate: cytochrome c oxidoreductase activity. However, such activity can only be measured for a soxA mutant strain if the periplasmic extract is supplemented with purified cytochrome c 551 . Gene clusters similar to the R. sulfidophilum sox locus can be found in the genome of a green sulfur bacterium and in phylogenetically diverse nonphotosynthetic autotrophs.
The SoxAX complex of the bacterium Rhodovulum sulfidophilum is a heterodimeric c-type cytochrome that plays an essential role in photosynthetic thiosulfate and sulfide oxidation. The three heme sites of SoxAX have been analyzed using electronic absorption, electron paramagnetic resonance, and magnetic circular dichroism spectroscopies. Heme-3 in the ferric state is characterized by a Large g(max) EPR signal and has histidine and methionine axial heme iron ligands which are retained on reduction to the ferrous state. Hemes-1 and -2 both have thiolate plus nitrogenous ligand sets in the ferric state and give rise to rhombic EPR spectra. Heme-1, whose ligands derive from cysteinate and histidine residues, remains ferric in the presence of dithionite ion. Ferric heme-2 exists with a preparation-dependent mixture of two different ligand sets, one being cysteinate/histidine, the other an unidentified pair with a weaker crystal-field strength. Upon reduction of the SoxAX complex with dithionite, a change occurs in the ligands of heme-2 in which the thiolate is either protonated or replaced by an unidentified ligand. Sequence analysis places the histidine/methionine-coordinated heme in SoxX and the thiolate-liganded hemes in SoxA. SoxAX is the first naturally occurring c-type cytochrome in which a thiolate-coordinated heme has been identified.
A Paracoccus denitrificans strain (M6Omega) unable to use nitrate as a terminal electron acceptor was constructed by insertional inactivation of the periplasmic and membrane-bound nitrate reductases. The mutant strain was able to grow aerobically with nitrate as the sole nitrogen source. It also grew anaerobically with nitrate as sole nitrogen source when nitrous oxide was provided as a respiratory electron acceptor. These growth characteristics are attributed to the presence of a third, assimilatory nitrate reductase. Nitrate reductase activity was detectable in intact cells and soluble fractions using nonphysiological electron donors. The enzyme activity was not detectable when ammonium was included in the growth medium. The results provide an unequivocal demonstration that P. denitrificans can express an assimilatory nitrate reductase in addition to the well-characterised periplasmic and membrane-bound nitrate reductases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.