Neuroinflammation is a component of age-related neurodegenerative diseases and cognitive decline. Saturated (SFA) and monounsaturated (MUFA) fatty acids are bioactive molecules that may play different extrinsic and intrinsic roles in neuroinflammation, serving as exogenous ligands for cellular receptors, or endogenous components of cell structural, energetic and signaling pathways. We determined the fatty acyl profile of BV2 microglial cells before and after acute activation with lipopolysaccharide (LPS). We also investigated the effect of SFA and MUFA pretreatment on the production of an invasive, neurotoxic phenotype in BV2 cells. Acute activation of BV2 microglia resulted in an increase in the relative content of SFA (12:0, 16:0, 18:0, 20:0, 22:0, and 24:0 increased significantly), and a relative decrease in the content of MUFA (16:1n7, 18:1n7, 18:1n9, 20:1n9, 24:1n9 decreased significantly). In agreement, the major stearoyl-CoA desaturase (SCD) isoform in BV2 cells, SCD2, was significantly down-regulated by LPS. We next treated cells with SFA (16:0 or 18:0) or MUFA (16:1n7 or 18:1n9), and found that levels of secreted IL6 were increased, as was secreted MMP9-mediated proteolytic activity. To test the functional significance, we treated SH-SY5Y neuronal cells with conditioned medium from BV2 cells pretreated with fatty acids, and found a small but significant induction of cell death. Our findings suggest differential intrinsic roles for SFA and MUFA in activated microglial cells, but similar extrinsic roles for these fatty acid species in inducing activation. Expansion of SFA is important during microglial cell activation, but either supplemental SFA or MUFA may contribute to chronic low-grade neuroinflammation.
Whole animal physiological measures were assessed following three days of either standard diet or high fat diet, in either the fasted or non-fasted states. Our data shows that acute 3-day high fat feeding increases whole body lipid oxidation. When this feeding protocol is followed by an overnight fast, oxygen consumption (VO2) in the light phase is reduced in both dietary groups, but oxygen consumption in the dark phase is only reduced in mice fed the high-fat diet. Furthermore, the fasting-induced rise in dark cycle activity level observed in mice maintained on a standard diet is abolished when mice are fed a high-fat diet.
We investigated the effect of short-term fasting on coordinate changes in the fatty acid composition of adipose triacylglycerol (TAG), serum non-esterified fatty acids (NEFA), liver TAG, and serum TAG and phospholipids in mice fed ad libitum or fasted for 16 h overnight. In contrast to previous reports under conditions of maximal lipolysis, adipose tissue TAG was not preferentially depleted of n-3 PUFA or any specific fatty acids, nor were there any striking changes in the serum NEFA composition. Short-term fasting did, however, increase the hepatic proportion of n-3 PUFA, and almost all individual species of n-3 PUFA showed relative and absolute increases. The relative proportion of n-6 PUFA in liver TAG also increased but to a lesser extent, resulting in a significant decrease in the n-6:n-3 PUFA ratio (from 14.3 ± 2.54 to 9.6 ± 1.20), while the proportion of MUFA decreased significantly and SFA proportion did not change. Examination of genes involved in PUFA synthesis suggested that hepatic changes in the elongation and desaturation of precursor lipids could not explain this effect. Rather, an increase in the expression of fatty acid transporters specific for 22:6n-3 and other long-chain n-3 and n-6 PUFA likely mediated the observed hepatic enrichment. Analysis of serum phospholipids indicated a specific increase in the concentration of 22:6n-3 and 16:0, suggesting increased specific synthesis of DHA-enriched phospholipid by the liver for recirculation. Given the importance of blood phospholipid in distributing DHA to neural tissue, these findings have implications for understanding the adipose-liver-brain axis in n-3 PUFA metabolism.
Circulating non-esterified fatty acids (NEFA) rise during fasting and are taken up by the kidneys, either directly from the plasma or during re-uptake of albumin from glomerular filtrate, and are stored as triacylglycerol (TAG). Subsequent utilization of stored fatty acids requires their hydrolytic release from cellular lipid droplets, but relatively little is known about renal lipolysis. We found that total [(3)H]triolein hydrolase activity of kidney lysates was significantly increased by 15% in the fasted state. Adipose triglyceride lipase (Atgl) and hormone-sensitive lipase (Hsl) mRNA expression was time-dependently increased by fasting, along with other fatty acid metabolism genes (Pparα, Cd36, and Aox). ATGL and HSL protein levels were also significantly induced (by 239 ± 7% and 322 ± 8%, respectively). Concomitant with changes in total protein levels, there was an increase in ATGL phosphorylation at the AMPK-regulated serine 406 site in the 14-3-3 binding motif, and an increase in HSL phosphorylation at serines 565 and 660 that are regulated by AMPK and PKA, respectively. Using immunofluorescence, we further demonstrate nearly ubiquitous expression of ATGL in the renal cortex with a concentration on the apical/lumenal surface of some cortical tubules. Our findings suggest a role for ATGL and HSL in kidney lipolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.