Docosahexaenoic acid (DHA, 22:6n-3) is higher in the blood and tissues of females relative to males, but the underlying mechanism is not clear. The present study examined the expression of enzymes involved in the biosynthesis of DHA from short-chain n-3 polyunsaturated fatty acids in male and female rats (n = 6 for each sex). Rats were maintained on an AIN-93G diet and sacrificed at 14 weeks of age after an overnight fast. Plasma, erythrocytes, liver, heart, and brain were collected for fatty acid composition analysis and the determination of enzyme and transcription factor expression by RT-PCR and immunoblotting. Females had higher DHA concentrations in the total lipids of liver, plasma, erythrocyte, and heart (53%, 75%, 36%, and 25% higher, respectively, compared with males) with no sex differences in brain DHA concentrations. The mRNA content of Δ5-desaturase, Δ6-desaturase, and elongase 2 was 1.0-, 1.4-, and 1.1-fold higher, respectively, in the livers of female rats compared with males, with no differences in the hearts or brains. The protein content of Δ6-desaturase was also higher in females. Higher hepatic mRNA of sterol-regulatory element-binding protein 1-c and estrogen receptor α in the females suggests that lipogenic and estrogen signaling mechanisms are involved. The sex difference in DHA concentration is tissue specific and is associated with higher Δ6-desaturase expression in females relative to males, which appears to be limited to the liver.
Whole animal physiological measures were assessed following three days of either standard diet or high fat diet, in either the fasted or non-fasted states. Our data shows that acute 3-day high fat feeding increases whole body lipid oxidation. When this feeding protocol is followed by an overnight fast, oxygen consumption (VO2) in the light phase is reduced in both dietary groups, but oxygen consumption in the dark phase is only reduced in mice fed the high-fat diet. Furthermore, the fasting-induced rise in dark cycle activity level observed in mice maintained on a standard diet is abolished when mice are fed a high-fat diet.
DHA is important for fetal neurodevelopment. During pregnancy, maternal plasma DHA increases, but the mechanism is not fully understood. Using rats fed a fixed-formula diet (DHA as 0.07% total energy), plasma and liver were collected for fatty acid profiling before pregnancy, at 15 and 20 days of pregnancy, and 7 days postpartum. Phosphatidylethanolamine methyltransferase (PEMT) and enzymes involved in PUFA synthesis were examined in liver. Ad hoc transcriptomic and lipidomic analyses were also performed. With pregnancy, DHA increased in liver and plasma lipids, with a large increase in plasma DHA between day 15 and day 20 that was mainly attributed to an increase in 16:0/DHA phosphatidylcholine (PC) in liver (2.6-fold) and plasma (3.9-fold). Increased protein levels of Δ6 desaturase (FADS2) and PEMT at day 20 and increased expression and PEMT activity at day 15 suggest that during pregnancy, both DHA synthesis and 16:0/DHA PC synthesis are upregulated. Transcriptomic analysis revealed minor changes in the expression of genes related to phospholipid synthesis, but little insight on DHA metabolism. Hepatic PEMT appears to be the mechanism for increased plasma 16:0/DHA PC, which is supported by increased DHA biosynthesis based on increased FADS2 protein levels.
Monounsaturated fatty acids (MUFA) have been viewed as either beneficial or neutral with respect to health; however, recent evidence suggests that MUFA may be associated with obesity and cardiovascular disease. Sex differences in MUFA composition have been reported in both rats and humans, but the basis for this sexual dimorphism is unknown. In the current study, enzymes involved in MUFA biosynthesis are examined in rat and cell culture models. Male and female rats were maintained on an AIN-93G diet prior to killing at 14 weeks of age after an overnight fast. Concentrations of 16:0 (2,757 ± 616 vs. 3,515 ± 196 lg fatty acid/g liver in males), 18:1n-7 (293 ± 66 vs. 527 ± 49 lg/g) and 18:1n-9 (390 ± 80 vs. 546 ± 47 lg/g) were lower, and concentrations of 18:0 (5,943 ± 1,429 vs. 3,987 ± 325 lg/g) were higher in phospholipids in livers from female rats compared with males. Hepatic elongase 6 mRNA and protein were 5.9-and 2.0-fold higher, respectively, in females compared with males. Stearoyl-CoA desaturase expression did not differ. Specific hormonal effects were examined in HepG2 cells cultured with varying concentrations of 17b-estradiol, progesterone and testosterone (0, 10, 30 and 100 nM) for 72 h. Progesterone and 17b-estradiol treatments increased, while testosterone decreased, elongase 6 protein. Sex differences in MUFA composition were associated with increased expression of hepatic elongase 6 in females relative to male rats, which appears to be mediated by sex hormones based on observations of hormonal treatments of HepG2 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.