Leaf extracts of Pseuderanthemum palatiferum (Nees) Radlk were investigated for their effects on human breast cancer MDA-MB-231 cell growth inhibition. Pseuderanthemum palatiferum (Nees) Radlk extracts were prepared using fresh or dried leaves and extracted by either water or 95% ethanol, respectively. Fresh leaf ethanolic extract was the most toxic to MDA-MB-231 cells measured by 3-(4,5-dimethyl)-2,5-diphenyl tetrazolium bromide assay. Fresh leaf ethanolic extract-treated MDA-MB-231 cell death was stained with propidium iodide and examined under fluorescence microscopy. Cell death was confirmed by annexin V-fluorescein isothiocyanate/propidium iodide and propidium iodide-stained cells employing flow cytometry. The mitochondrial transmembrane potential was disrupted in fresh leaf ethanolic extract-treated MDA-MB-231 cells and the percentage of cells with reduced mitochondrial transmembrane potential increased according to concentrations. Mitochondrial transmembrane potential-driven regulated cell deaths were in the form of both apoptosis and necrosis. Oxidative stress probe, 2',7'-dichlorodihydrofluorescein diacetate, was used to indicate the redox status. Dichlorofluorescein level was significantly lower at high fresh leaf ethanolic extract concentrations. Total phenolic contents were found in all Pseuderanthemum palatiferum (Nees) Radlk extracts, whereas Ca level in the cytosol increased, indicating Ca overload and endoplasmic reticulum stress involvement with the activation of caspase-3, -8, and -9. In conclusion, fresh leaf ethanolic extract induced human breast cancer MDA-MB-231 programmed cell death via endoplasmic reticulum and oxidative stress by activating both extrinsic and intrinsic signaling pathways.
Iron overload is a major complication in transfusion-dependent thalassemia (TDT) patients. Chronic oxidative stress from iron overload may lead to cellular damage and viability. This is a cross-sectional study. Transfusion-dependent thalassemia patients aged ⩾18 years old were enrolled. Transfusion-dependent thalassemia patient’s serum and normal volunteer’s serum were separately incubated with healthy peripheral blood mononuclear cells (PBMCs). The cell viability was measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay at 24, 48, and 72 hours. Sixty-nine TDT patients and 22 healthy controls were enrolled. The mean of PBMCs viability after incubation with serum from TDT patients was lower than that with the controls (88.65% vs 103.56% at 24 hours, 78.77% vs 112.04%% at 48 hours, and 71.18% vs 132.16%% at 72 hours, respectively). High serum ferritin level (correlation −0.29, P < .05) and white blood cell (WBC) count negatively affected cell viability (correlation −2.86, P = .05). From multivariate analysis, serum ferritin level is the only significant risk factor that is independently associated with cell viability (correlation −11.42, P < .001). Our findings showed that TDT patient’s serum causes decreased cell viability. Serum ferritin level was a significant independent factor influencing cell viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.