Microarray studies have shown recently that microbial infection leads to extensive changes in the Drosophila gene expression programme. However, little is known about the control of most of the fly immune‐responsive genes, except for the antimicrobial peptide (AMP)‐encoding genes, which are regulated by the Toll and Imd pathways. Here, we used oligonucleotide microarrays to monitor the effect of mutations affecting the Toll and Imd pathways on the expression programme induced by septic injury in Drosophila adults. We found that the Toll and Imd cascades control the majority of the genes regulated by microbial infection in addition to AMP genes and are involved in nearly all known Drosophila innate immune reactions. However, we identified some genes controlled by septic injury that are not affected in double mutant flies where both Toll and Imd pathways are defective, suggesting that other unidentified signalling cascades are activated by infection. Interestingly, we observed that some Drosophila immune‐responsive genes are located in gene clusters, which often are transcriptionally co‐regulated.
The production of antimicrobial peptides is an important aspect of host defense in multicellular organisms. In Drosophila, seven antimicrobial peptides with different spectra of activities are synthesized by the fat body during the immune response and secreted into the hemolymph. Using GFP reporter transgenes, we show here that all seven Drosophila antimicrobial peptides can be induced in surface epithelia in a tissue-specific manner. The imd gene plays a critical role in the activation of this local response to infection. In particular, drosomycin expression, which is regulated by the Toll pathway during the systemic response, is regulated by imd in the respiratory tract, thus demonstrating the existence of distinct regulatory mechanisms for local and systemic induction of antimicrobial peptide genes in Drosophila.
In mammals, TAK1, a MAPKKK kinase, is implicated in multiple signaling processes, including the regulation of NF-B activity via the IL1-R/TLR pathways. TAK1 function has largely been studied in cultured cells, and its in vivo function is not fully understood. We have isolated null mutations in the Drosophila dTAK1 gene that encodes dTAK1, a homolog of TAK1. dTAK1 mutant flies are viable and fertile, but they do not produce antibacterial peptides and are highly susceptible to Gram-negative bacterial infection. This phenotype is similar to the phenotypes generated by mutations in components of the Drosophila Imd pathway. Our genetic studies also indicate that dTAK1 functions downstream of the Imd protein and upstream of the IKK complex in the Imd pathway that controls the Rel/NF-B like transactivator Relish. In addition, our epistatic analysis places the caspase, Dredd, downstream of the IKK complex, which supports the idea that Relish is processed and activated by a caspase activity. Our genetic demonstration of dTAK1's role in the regulation of Drosophila antimicrobial peptide gene expression suggests an evolutionary conserved role for TAK1 in the activation of Rel/NF-B-mediated host defense reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.