The production of antimicrobial peptides is an important aspect of host defense in multicellular organisms. In Drosophila, seven antimicrobial peptides with different spectra of activities are synthesized by the fat body during the immune response and secreted into the hemolymph. Using GFP reporter transgenes, we show here that all seven Drosophila antimicrobial peptides can be induced in surface epithelia in a tissue-specific manner. The imd gene plays a critical role in the activation of this local response to infection. In particular, drosomycin expression, which is regulated by the Toll pathway during the systemic response, is regulated by imd in the respiratory tract, thus demonstrating the existence of distinct regulatory mechanisms for local and systemic induction of antimicrobial peptide genes in Drosophila.
Insects respond to a bacterial challenge by rapidly synthesizing a diverse range of antibacterial and antifungal peptides. One of them, drosocin, a 19-residue proline-rich antibacterial peptide, was isolated from Drosophila. This peptide carries a disaccharide moiety attached to a threonine residue in mid-chain position. The present report describes the enlarged-scale chemical synthesis of drosocin, glycosylated with Gal(~l+3)GalNAc(al+O). We have studied the range of activity of the synthetic glycopeptide, of two truncated glycosylated isoforms, and of the unglycosylated L and D enantiomers. Both isolated and chemically synthesized drosocins carrying the disaccharide display the same antibacterial activity. Using circular dichroic spectroscopy we demonstrated that the 0-linked disaccharidic motif did not affect the backbone conformation of drosocin. The antibacterial activity of the synthetic glycopeptide was directed against gram-negative strains with the exception of the gram-positive bacteria Micrococcus luteus. Deletion of the first five N-terminal residues completely abolished the activity of drosocin. As a first approach to the study of the mode of action of drosocin, we have synthesized a non-glycosylated D enantiomer and, using this molecule, we have shown that drosocin may act on the gram-negative bacteria through a stereospecific target.
One of the characteristics of the host defense of higher insects is the rapid and transient synthesis of a variety of potent antimicrobial peptides. To date, several distinct inducible antimicrobial peptides or peptide families have been totally or partially characterized. We present here the isolation and characterization of a novel 26-residue proline-rich immune-inducible peptide from Drosophila. which exhibits both antibacterial (Gram-positive) and antifungal activities. Peptide sequencing and cDNA cloning indicate the presense of two isoforms in our Drosophiln OregonK strain, which differ by one residue (His compared to Arg) as a consequence of a single nucleotide change. The gene, which maps in position 52A1-2 on the right arm of the second chromosome, is expressed in the fat body after immune challenge. The novel peptide, which we propose to name metchnikowin, is a member of a family of proline-rich peptides, and we discuss the possible evolutionary relationships within this family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.