While lignin has been gaining wide research interest for a variety of applications across many industries, relatively little work has been published on its applications in nonwovens. Consequently, this article offers an overview of the underlying principles and both the present and future applications of lignin within the nonwoven industry. Due to the distinct structure of lignin, processing, fiber production, composites with polymers, dye dispersant, and fire-retardant applications are all unique opportunities for lignin application in nonwovens discussed in this review. Conventional nonwoven processing techniques, such as electrospinning, have been reported to successfully produce lignin-based nonwovens, specifically lignin/polymer composite nonwovens. This account points to pivotal polymer matrix/lignin composite compatibility issues that define various processing technologies. However, lignin use is not limited to incorporation within nonwoven fibers mats and is currently used in dye dispersion with the potential of phase out petroleum-based dye dispersants. Finally, the high phenolic content of lignin endows it with fire-retardant and antimicrobial properties, among others, that present additional opportunities for lignin in the nonwoven industry. Throughout this review, an effort is made to outline the advantages and challenges of using lignin as a green and sustainable ingredient for the production of nonwoven materials.
This review article considers processes by which the main components of wood have been reported to arrange themselves into various kinds of organized structures, at least to a partial extent. The biosynthesis of wood provides the clearest examples of such self-organization. For example, even before a cellulose macromolecule has been completely synthesized in a plant organism, the leading parts of the polymer chains already will have assembled themselves into organized crystals, i.e., nano-fibrils. This review then considers a challenge that faces industrial engineers: how to emulate the great success of natural systems when attempting to achieve favorable materials properties, process efficiency, and environmental friendliness when developing new engineered wood structures, barrier films, and other desired products composed of lignocellulosic materials. Based on the reviewed literature, it appears that the main chemical components of wood, even after they have been isolated from each other, still have a remnant of their initial tendencies to come back together in a somewhat non-random fashion, following mechanisms that can be favorable for the production of engineered materials having potentially useful functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.