Pseudomonas aeruginosa airway infection is the leading cause of morbidity and mortality in cystic fibrosis (CF) patients. Various in vitro models have been developed to study P. aeruginosa pathobiology in the CF lung. In this study we produced a modified artificial-sputum medium (ASMDM) more closely resembling CF sputum than previous models, and extended previous work by using strain PAO1 arrays to examine the global transcription profiles of P. aeruginosa strain UCBPP-PA14 under early exponential-phase and stationary-phase growth. In early exponential phase, 38/39 nutrition-related genes were upregulated in line with data from previous in vitro models using UCBPP-PA14. Additionally, 23 type III secretion system (T3SS) genes, several anaerobic respiration genes and 24 quorum-sensing (QS)-related genes were upregulated in ASMDM, suggesting enhanced virulence factor expression and priming for anaerobic growth and biofilm formation. Under stationary phase growth in ASMDM, macroscopic clumps resembling microcolonies were evident in UCBPP-PA14 and CF strains, and over 40 potentially important genes were differentially expressed relative to stationary-phase growth in Luria broth. Most notably, QS-related and T3SS genes were downregulated in ASMDM, and iron-acquisition and assimilatory nitrate reductase genes were upregulated, simulating the iron-depleted, microaerophilic/anaerobic environment of CF sputum. ASMDM thus appears to be highly suitable for gene expression studies of P. aeruginosa in CF.
The emergence of virulent Pseudomonas aeruginosa clones is a threat to cystic fibrosis (CF) patients globally. Characterization of clonal P. aeruginosa strains is critical for an understanding of its clinical impact and developing strategies to meet this problem. Two clonal strains (AES-1 and AES-2) are circulating within CF centers in eastern Australia. In this study, phenotypic characteristics of 43 (14 AES-1, 5 AES-2, and 24 nonclonal) P. aeruginosa isolates were compared to gain insight into the properties of clonal strains. All 43 isolates produced bands of the predicted size in PCRs for vfr, rhlI, rhlR, lasA, lasB, aprA, rhlAB, and exoS genes; 42 were positive for lasI and lasR, and none had exoU. Thirty-seven (86%) isolates were positive in total protease assays; on zymography, 24 (56%) produced elastase/staphylolysin and 22 (51%) produced alkaline protease. Clonal isolates were more likely than nonclonal isolates to be positive for total proteases (P ؍ 0.02), to show elastase and alkaline protease activity by zymography (P ؍ 0.04 and P ؍ 0.01, respectively), and to show elastase activity by the elastin-Congo red assay (P ؍ 0.04). There were no other associations with genotype. Overall, increasing patient age was associated with decreasing elastase activity (P ؍ 0.03). Thirty-two (74%) isolates had at least one N-acylhomoserine lactone (AHL) by thin-layer chromatography. rhl-associated AHL detection was associated with the production and level of total protease and elastase activity (all P < 0.01). Thirty-three (77%) isolates were positive for ExoS by Western blot analysis, 35 (81%) produced rhamnolipids, and 34 (79%) showed chitinase activity. Findings suggest that protease activity during chronic infection may contribute to the transmissibility or virulence of these clonal strains.Pseudomonas aeruginosa lung infection is a major determinant of morbidity and mortality in cystic fibrosis (CF) patients (16). The pathogenesis of P. aeruginosa infection depends on multiple cell-associated and extracellular virulence factors including proteases (elastase [LasB], alkaline protease [AprA], and staphylolysin [LasA]), hemolysins (rhamnolipids), and toxins such as exoenzyme S (ExoS) and exotoxin A (13). Proteases contribute to pathogenesis in the lung through the induction of tissue necrosis and inflammation, destruction of surface receptors on neutrophils resulting in the inhibition of chemotaxis, phagocytosis, and the oxidative burst and degradation of surfactant proteins (27, 32).Many P. aeruginosa virulence factors, including the proteases, are regulated by cell-to-cell communication systems that rely on diffusible N-acylhomoserine lactones (AHLs) to monitor population size in a process known as "quorum sensing" (QS) (7, 31). P. aeruginosa has two AHL-regulated circuits: las, consisting of the transcriptional activator LasR and the AHL synthase LasI, which directs the synthesis of N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL), and rhl, consisting of RhlR and RhlI, which directs the synthesis of N-...
Transmissible Pseudomonas aeruginosa clones potentially pose a serious threat to cystic fibrosis (CF) patients. The AES-1 clone has been found to infect up to 40 % of patients in five CF centres in eastern Australia. Studies were carried out on clonal and non-clonal (NC) isolates from chronically infected CF patients, and the reference strain PAO1, to gain insight into the properties of AES-1. The transcriptomes of AES-1 and NC isolates, and of PAO1, grown planktonically and as a 72 h biofilm were compared using PAO1 microarrays. Microarray data were validated using real-time PCR. Overall, most differentially expressed genes were downregulated. AES-1 differentially expressed bacteriophage genes, novel motility genes, and virulence and quorum-sensing-related genes, compared with both PAO1 and NC. AES-1 but not NC biofilms significantly downregulated aerobic respiration genes compared with planktonic growth, suggesting enhanced anaerobic/microaerophilic growth by AES-1. Biofilm measurement showed that AES-1 formed significantly larger and thicker biofilms than NC or PAO1 isolates. This may be related to expression of the gene PA0729, encoding a biofilm-enhancing bacteriophage, identified by PCR in all AES-1 but few NC isolates (n542). Links with the Liverpool epidemic strain included the presence of PA0729 and the absence of the bacteriophage gene cluster PA0632-PA0639. No common markers were found with the Manchester strain. No particular differentially expressed gene in AES-1 could definitively be ascribed a role in its infectivity, thus increasing the likelihood that AES-1 infectivity is multifactorial and possibly involves novel genes. This study extends our understanding of the transcriptomic and genetic differences between clonal and NC strains of P. aeruginosa from CF lung.
Epidemic Pseudomonas aeruginosa have been identified in cystic fibrosis (CF) patients worldwide. The Australian Epidemic Strain-2 (AES-2) infects up to 40% of patients in three eastern Australian CF clinics. To investigate whether AES-2 isolates from chronically infected CF adults differentially express well-conserved genes potentially associated with transmissibility, we compared the transcriptomes of planktonic and biofilm-grown AES-2, infrequent P. aeruginosa clones and the reference P. aeruginosa PAO1 using the Affymetrix PAO1 array. The most interesting findings emerged from comparisons of planktonic and biofilm AES-2. AES-2 biofilms upregulated Type III secretion system genes, but downregulated quorum-sensing (QS)-regulatory genes, except lasR, QS-regulated, oxidative-stress and iron-storage genes. QS-regulated and iron-storage genes were downregulated to a greater extent in AES-2 biofilms compared with infrequent clone and PAO1 biofilms, suggesting enhanced anaerobic respiration in AES-2. Chitinase and chitin-binding protein maintained high expression in AES-2 biofilms compared with infrequent clone and PAO1 biofilms. Planktonic AES-2 upregulated QS regulators and QS-regulated genes, iron acquisition and aerobic respiration genes, and had high expression of Group III Type IV pilA compared with low expression of Group I Type IV pilA in infrequent clones. Together, these properties may enhance long-term survival of AES-2 in CF lung and contribute to its transmissibility.
Protease IV is important in the pathogenesis of Pseudomonas aeruginosa-induced microbial keratitis, but little is known of its role in cystic fibrosis (CF) lung infection. In this study protease IV production was examined in 43 P. aeruginosa isolates (24 non-clonal and 19 clonal) from the lungs of chronically infected adult patients attending the Royal Prince Alfred Hospital CF Clinic, Sydney, Australia. Overall, 32/43 (74 %) isolates were positive for protease IV protein by Western blotting and 22/43 (51 %) had evidence of active protease IV on gelatin zymography. Clonal strains were 1.6 times more likely than non-clonal strains to produce protease IV [18/19 (95 %) versus 14/24 (58 %), RR=1.6, CI 1.1–2.3, P=0.007] and 3 times more likely to secrete the protein [16/19 (84 %) versus 6/24 (25 %), RR=3.4, CI 1.6–6.9, P<0.001]. Nine of the ten strains negative by both Western blotting and zymography were non-clonal, and all but one of these was positive for the protease IV gene. There was a marked strain-to-strain variation in the amount of protease IV produced. Secretion of protease IV by clonal strains may enhance their infectivity and ability to adapt to the changing CF lung environment. Overall the findings suggest that protease IV plays an important role in the pathogenesis of P. aeruginosa infection in the CF lung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.