Pseudomonas aeruginosa airway infection is the leading cause of morbidity and mortality in cystic fibrosis (CF) patients. Various in vitro models have been developed to study P. aeruginosa pathobiology in the CF lung. In this study we produced a modified artificial-sputum medium (ASMDM) more closely resembling CF sputum than previous models, and extended previous work by using strain PAO1 arrays to examine the global transcription profiles of P. aeruginosa strain UCBPP-PA14 under early exponential-phase and stationary-phase growth. In early exponential phase, 38/39 nutrition-related genes were upregulated in line with data from previous in vitro models using UCBPP-PA14. Additionally, 23 type III secretion system (T3SS) genes, several anaerobic respiration genes and 24 quorum-sensing (QS)-related genes were upregulated in ASMDM, suggesting enhanced virulence factor expression and priming for anaerobic growth and biofilm formation. Under stationary phase growth in ASMDM, macroscopic clumps resembling microcolonies were evident in UCBPP-PA14 and CF strains, and over 40 potentially important genes were differentially expressed relative to stationary-phase growth in Luria broth. Most notably, QS-related and T3SS genes were downregulated in ASMDM, and iron-acquisition and assimilatory nitrate reductase genes were upregulated, simulating the iron-depleted, microaerophilic/anaerobic environment of CF sputum. ASMDM thus appears to be highly suitable for gene expression studies of P. aeruginosa in CF.
Pseudomonas aeruginosa, the leading cause of morbidity and mortality in people with cystic fibrosis (CF), adapts for survival in the CF lung through both mutation and gene expression changes. Frequent clonal strains such as the Australian Epidemic Strain-1 (AES-1), have increased ability to establish infection in the CF lung and to superimpose and replace infrequent clonal strains. Little is known about the factors underpinning these properties. Analysis has been hampered by lack of expression array templates containing CF-strain specific genes. We sequenced the genome of an acute infection AES-1 isolate from a CF infant (AES-1R) and constructed a non-redundant micro-array (PANarray) comprising AES-1R and seven other sequenced P. aeruginosa genomes. The unclosed AES-1R genome comprised 6.254Mbp and contained 6957 putative genes, including 338 not found in the other seven genomes. The PANarray contained 12,543 gene probe spots; comprising 12,147 P. aeruginosa gene probes, 326 quality-control probes and 70 probes for non-P. aeruginosa genes, including phage and plant genes. We grew AES-1R and its isogenic pair AES-1M, taken from the same patient 10.5 years later and not eradicated in the intervening period, in our validated artificial sputum medium (ASMDM) and used the PANarray to compare gene expression of both in duplicate. 675 genes were differentially expressed between the isogenic pairs, including upregulation of alginate, biofilm, persistence genes and virulence-related genes such as dihydroorotase, uridylate kinase and cardiolipin synthase, in AES-1M. Non-PAO1 genes upregulated in AES-1M included pathogenesis-related (PAGI-5) genes present in strains PACS2 and PA7, and numerous phage genes. Elucidation of these genes' roles could lead to targeted treatment strategies for chronically infected CF patients.
Objective We sought to review the effects of Dopamine Receptor Partial Agonist (DRPA) antipsychotic medications on milk supply and breastfeeding. Method Narrative review of selected literature including animal and human data. Results Scant case study evidence suggests that DRPAs may lead to reduced milk supply for some. Conclusions Women taking DRPAs should be advised of the possibility that these may affect milk supply, and reporting should be encouraged to aid future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.