A compact low-temperature plasma jet device was developed to use ambient air as plasma gas. The device was driven by a 2.52-kV high-voltage direct-current pulse in a burst mode, with a repetition rate of 2 kHz. The maximum plasma discharge current was 3.5 A, with an approximately 10 ns full-width half-maximum. Nitric oxide, hydroxyl radical, atomic oxygen, ozone, and hydrogen peroxide—important reactive oxygen and nitrogen species (RONS)—were mainly produced. The amount of plasma-generated RONS can be controlled by varying the pulse-modulation factors. After optimization, the plasma plume length was approximately 5 mm and the treatment temperature was less than 40 °C. The preliminary bactericidal effects were tested on Staphylococcus aureus, Pseudomonas aeruginosa, and methicillin-resistant S. aureus (MRSA), and their biofilms. The results showed that the plasma can effectively inactivate S. aureus, P. aeruginosa, and MRSA in both time- and pulse-dependent manner. Thus, this produced plasma device proved to be an efficient tool for inactivating deteriorating bacteria. Further versatile utilization of this portable plasma generator is also promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.