Vibrio parahaemolyticus is usually found in seafood and causes acute gastroenteritis in humans. Therefore, a detection method of pathogenic V. parahaemolyticus is necessary. Multiplex PCR combined with lateral flow dipstick (LFD) assay was developed to detect pathogenic V. parahaemolyticus. Biotin-, FAM-, and Dig-conjugated primers targeting thermolabile hemolysin (TLH) and thermostable direct hemolysin (TDH) genes were used for multiplex PCR amplification. The condition of the method was optimized and evaluated by agarose gel electrophoresis and universal lateral flow dipstick. The specificity assay was evaluated using strains belonging to seven foodborne pathogen species. The sensitivity of the method was also evaluated using DNA in the concentration range of 0.39–100 ng/reaction. The artificial spiking experiment was performed using 10 g of shrimp samples with an enrichment time of 0, 4, and 8 h with 101, 102, and 103 CFU of V. parahaemolyticus. The developed multiplex PCR-LFD assay showed no non-specific amplification with a limit of the detection of 0.78 ng DNA/reaction visualized by agarose gel electrophoresis and 0.39 ng DNA with LFD assay. The artificial spiking experiment demonstrated that this method could detect pathogenic V. parahaemolyticus at 10 CFU/10 g shrimp samples following a 4 h of enrichment. Multiplex PCR-LFD assay was therefore established for detecting pathogenic V. parahaemolyticus with high sensitivity and specificity and might be a useful tool to develop a detection kit used in the food safety sector.
Chitooligosaccharide (COS) and gallic acid (GA) are natural compounds with anti-cancer properties, and their conjugate (COS–GA) has several biological activities. Herein, the anti-cancer activity of COS–GA in SW620 colon cancer cells was investigated. MTT assay was used to evaluate cell viability after treatment with 62.5, 122, and 250 µg/mL of COS, GA, and COS–GA for 24 and 48 h. The number of apoptotic cells was determined using flow cytometry. Proteomic analysis was used to explore the mechanisms of action of different compounds. COS–GA and GA showed a stronger anti-cancer effect than COS by reducing SW620 cell proliferation at 125 and 250 µg/mL within 24 h. Flow cytometry revealed 20% apoptosis after COS–GA treatment for 24 h. Thus, GA majorly contributed to the enhanced anti-cancer activity of COS via conjugation. Proteomic analysis revealed alterations in protein translation and DNA duplication in the COS group and the structural constituents of the cytoskeleton, intermediate filament organization, the mitochondrial nucleoid, and glycolytic processes in the COS–GA group. Anti-cancer-activity-related proteins were altered, including CLTA, HSPA9, HIST2H2BF, KRT18, HINT1, DSP, and VIM. Overall, the COS–GA conjugate can serve as a potential anti-cancer agent for the safe and effective treatment of colon cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.