We report significant heterozygosity for numerous Robertsonian translocations in the southern short-tailed shrew (Blarina carolinensis) in western Tennessee. Eight Robertsonian rearrangements were documented using G-banding techniques that explain the variability in diploid numbers from 46 throughout most of the range of the species to 34–40 in western Tennessee. These fusions resulted in the loss of telomere sequences and were not associated with nucleolar organizer regions. When heterozygocity is considered, the lowest diploid number possibly present would be 30. Four localities with distances of over 180 km apart were sampled, and 80–90% of the collected animals were heterozygous for at least one rearrangement. No putative parental type was found in western Tennessee. Heterozygosity for the same rearrangements was found in these different localities, and no monobrachial fusions were noted. Thus, this is a very wide hybrid zone with rare or absent parental types in the areas sampled or is an evolutionary stage preceding establishment of Robertsonian races. Selective forces, if any, were minimal, as evidenced by the wide area of polymorphism, significant heterozygosity, and the fact that the Robertsonian translocations were in Hardy-Weinberg equilibrium. The origin of such extensive polymorphism in western Tennessee is discussed, especially in light of putative effects of the New Madrid seismic activity. Similarities and differences are noted between the Blαrinα model and the well-documented variation in the European common shrew (Sorex αrαneus) and Mus musculus groups.
The genetic variability of gray wolves (Canis lupus) from northwestern Canada was assessed through starch-gel electrophoresis. Of 27 protein systems examined, 25, representing 37 presumptive loci, were consistently scorable; 7 proteins (5 were consistently scorable) exhibited polymorphism. The level of heterozygosity (3.0%) was medial relative to values reported for natural populations of Carnivora and high relative to values reported for natural populations of canids. An overall pattern of few deviations from Hardy–Weinberg expectations and some spatial heterogeneity was observed. Wolves associated with different caribou herds exhibited a low level of differentiation (FST = 0.029). The pattern of variability supports the view of a large panmictic population resulting from extensive movements of individuals and packs and from natural and human impacts on pack structure and formation.
Mosquitofish (Gambusia a&is) were collected from 17 reservoirs on three islands in Hawaii, USA. Genetic and life history traits for adult females from these populations were used to evaluate hypotheses concerning short-term evolutionary divergence of populations recently established from a common ancestral source. The effects of founder events and drift on genetic variability and population differentiation were also examined. Significant differences in life history characteristics, allele frequencies, and multi-locus heterozygosities (H) were found among fish populations collected from different reservoirs and between reservoirs classified as stable or fluctuating on the basis of temporal fluctuation in water level. Females from stable reservoirs exhibited greater standard length (35.1 vs 32.8 mm), lower fecundity (11.9 vs 15.2 embryos), lower reproductive allocation (18.2% vs 22.8%), but larger mean embryo size (1.95 vs 1.67 mg) than females from fluctuating reservoirs. Consistency in means among replicates of each reservoir class and concordance in direction and magnitude of differences reported here and results of sampling conducted from these same locations 10 years previously (Stearns, 1983a) suggest that ecological factors intrinsic to these two environments are important in determining population life history traits. Females from stable reservoirs exhibited lower heterozygosity than females from fluctuating reservoirs (0.134 vs 0.158, respectively). Levels and direction of differences in heterozygosity, the high proportion of polymorphic loci and lack of fixation of alternative alleles argue against a purely stochastic explanation for genetic and life history variation among reservoir populations. Levels of genetic variability and interpopulation differentiation were similar to those observed in mainland populations of this species. A high proportion of the genetic diversity was apportioned between populations and within populations due to differences between juveniles and adults. Significant genotypic differences between adult and juvenile age classes suggest that the genetic divergence of local populations may occur over short periods of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.