Fluoxetine is used widely as an antidepressant for the treatment of cancer-related depression, but has been reported to also have anti-cancer activity. In this study, we investigated the cytotoxicity of fluoxetine to human gastric adenocarcinoma cells; as shown by the MTT assay, fluoxetine induced cell death. Subsequently, cells were treated with 10 or 20 μM fluoxetine for 24 h and analyzed. Apoptosis was confirmed by the increased number of early apoptotic cells, shown by Annexin V-propidium iodide staining. Nuclear condensation was visualized by DAPI staining. A significant increase in the expression of cleaved PARP was observed by western blotting. The pan-caspase inhibitor Z-VAD-FMK was used to detect the extent of caspase-dependent cell death. The induction of autophagy was determined by the formation of acidic vesicular organelles (AVOs), which was visualized by acridine orange staining, and the increased expression of autophagy markers, such as LC3B, Beclin 1, and p62/SQSTM 1, observed by western blotting. The expression of upstream proteins, such as p-Akt and p-mTOR, were decreased. Autophagic degradation was evaluated by using bafilomycin, an inhibitor of late-stage autophagy. Bafilomycin did not significantly enhance LC3B expression induced by fluoxetine, which suggested autophagic degradation was impaired. In addition, the co-administration of the autophagy inhibitor 3-methyladenine and fluoxetine significantly increased fluoxetine-induced apoptosis, with decreased p-Akt and markedly increased death receptor 4 and 5 expression. Our results suggested that fluoxetine simultaneously induced both protective autophagy and apoptosis and that the inhibition of autophagy enhanced fluoxetine-induced apoptosis through increased death receptor expression.
Dulaglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist, is widely used to treat diabetes. However, its effects on muscle wasting due to aging are poorly understood. In the current study, we investigated the therapeutic potential and underlying mechanism of dulaglutide in muscle wasting in aged mice. Dulaglutide improved muscle mass and strength in aged mice. Histological analysis revealed that the cross-sectional area of the tibialis anterior (TA) in the dulaglutide-treated group was thicker than that in the vehicle group. Moreover, dulaglutide increased the shift toward middle and large-sized fibers in both young and aged mice compared to the vehicle. Dulaglutide increased myofiber type I and type IIa in young (18.5% and 8.2%) and aged (1.8% and 19.7%) mice, respectively, compared to the vehicle group. Peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis, decreased but increased by dulaglutide in aged mice. The expression of atrophic factors such as myostatin, atrogin-1, and muscle RING-finger protein-1 was decreased in aged mice, whereas that of the myogenic factor, MyoD, was increased in both young and aged mice following dulaglutide treatment. In aged mice, optic atrophy-1 (OPA-1) protein was decreased, whereas Toll-like receptor-9 (TLR-9) and its targeting inflammatory cytokines (interleukin-6 [IL-6] and tumor necrosis factor-α [TNF-α]) were elevated in the TA and quadriceps (QD) muscles. In contrast, dulaglutide administration reversed this expression pattern, thereby significantly attenuating the expression of inflammatory cytokines in aged mice. These data suggest that dulaglutide may exert beneficial effects in the treatment of muscle wasting due to aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.