Carbohydrate-protein interactions on surface and in solution were quantitatively measured by a glycan microarray. Assessing carbohydrate affinities is typically difficult due to weak affinities and limited sources of structurally complex glycans. We described here a sensitive, high-throughput, and convenient glycan microarray technology for the simultaneous determination of a wide variety of parameters in a single experiment using small amounts of materials. Assay systems based on this technology were developed to analyze multivalent interactions and determine the surface dissociation constant (KD,surf) for surface-coated mannose derivatives with mannose binding lectins and antibodies. Competition experiments that employed monovalent ligands in solution yielded KD and Ki values in solution similar to equilibrium binding constants obtained in titration microcalorimetry and surface plasmon resonance experiments.
It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4 ؉ T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate-protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC 50 in the nanomolar range. A second-generation Man 9 dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent.glycodendron ͉ high mannose ͉ multivalency ͉ HIV vaccine ͉ antiviral agent
The outbreak of COVID-19 caused by SARS-CoV-2 has resulted in more than 50 million confirmed cases and over 1 million deaths worldwide as of November 2020. Currently, there are no effective antivirals approved by the Food and Drug Administration to contain this pandemic except the antiviral agent remdesivir. In addition, the trimeric spike protein on the viral surface is highly glycosylated and almost 200,000 variants with mutations at more than 1,000 positions in its 1,273 amino acid sequence were reported, posing a major challenge in the development of antibodies and vaccines. It is therefore urgently needed to have alternative and timely treatments for the disease. In this study, we used a cell-based infection assay to screen more than 3,000 agents used in humans and animals, including 2,855 small molecules and 190 traditional herbal medicines, and identified 15 active small molecules in concentrations ranging from 0.1 nM to 50 μM. Two enzymatic assays, along with molecular modeling, were then developed to confirm those targeting the virus 3CL protease and the RNA-dependent RNA polymerase. Several water extracts of herbal medicines were active in the cell-based assay and could be further developed as plant-derived anti–SARS-CoV-2 agents. Some of the active compounds identified in the screen were further tested in vivo, and it was found that mefloquine, nelfinavir, and extracts of Ganoderma lucidum (RF3), Perilla frutescens, and Mentha haplocalyx were effective in a challenge study using hamsters as disease model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.