Colloidal nanocrystals (NCs), especially lead sulfide NCs, are promising candidates for solution-processed next-generation photodetectors with high-speed operation frequencies. However, the intrinsic response time of PbS-NC photodetectors, which is the material-specific physical limit, is still elusive, as the reported response times are typically limited by the device geometry. Here, we use the two-pulse coincidence photoresponse technique to identify the intrinsic response time of 1,2-ethanedithiol-functionalized PbS-NC photodetectors after femtosecond-pulsed 1560 nm excitation. We obtain an intrinsic response time of ∼1 ns, indicating an intrinsic bandwidth of ∼0.55 GHz as the material-specific limit. Examination of the dependence on laser power, gating, bias, temperature, channel length, and environmental conditions suggest that Auger recombination, assisted by NC-surface defects, is the dominant mechanism. Accordingly, the intrinsic response time might further be tuned by specifically controlling the ligand coverage and trap states. Thus, PbS-NC photodetectors are feasible for gigahertz optical communication in the third telecommunication window.
We investigate the time-resolved photoelectric response of WSe2 crystals on glass and flexible polyimide substrates to determine the effect of a changed dielectric environment on the speed of the photodetectors....
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.