The amoeba-resistant bacterium Legionella pneumophila causes Legionnaires' disease and employs a type IV secretion system (T4SS) to replicate in the unique, ER-associated Legionella-containing vacuole (LCV). The large fusion GTPase Sey1/atlastin is implicated in ER dynamics, ER-derived lipid droplet (LD) formation, and LCV maturation. Here we employ cryo-electron tomography, confocal microscopy, proteomics, and isotopologue profiling to analyze LCV-LDs interactions in the genetically tractable amoeba Dictyostelium discoideum. Dually fluorescence-labeled D. discoideum producing LCV and LD markers revealed that Sey1 as well as the L. pneumophila T4SS and the Ran GTPase activator LegG1 promote LCV-LDs interactions. In vitro reconstitution using purified LCVs and LDs from parental or Dsey1 mutant D. discoideum indicated that Sey1 and GTP promote this process. Sey1 and the L. pneumophila fatty acid transporter FadL are implicated in palmitate catabolism and palmitate-dependent intracellular growth. Taken together, our results reveal that Sey1 and LegG1 mediate LD- and FadL-dependent fatty acid metabolism of intracellular L. pneumophila.
The facultative intracellular bacterium Legionella pneumophila employs the Icm/Dot type IV secretion system (T4SS) to replicate in a unique membrane-bound compartment, the Legionella containing vacuole (LCV). The endoplasmic reticulum (ER)-resident large fusion GTPase Sey1/atlastin promotes remodeling and expansion of LCVs, and the GTPase is also implicated in the formation of ER-derived lipid droplets (LDs). Here we show that LCVs intimately interact with palmitate-induced LDs in Dictyostelium discoideum amoeba. Comparative proteomics of LDs isolated from the D. discoideum parental strain Ax3 or Δsey1 revealed 144 differentially produced proteins, of which 7 or 22 were exclusively detected in LDs isolated from strain Ax3 or Δsey1, respectively. Using dually fluorescence-labeled amoeba producing the LCV marker P4C GFP or AmtA-GFP and the LD marker mCherry-perilipin, we discovered that Sey1 and the L. pneumophila Icm/Dot T4SS as well as the effector LegG1 promote LCV-LD interactions. In vitro reconstitution of the LCV-LD interactions using purified LCVs and LDs from D. discoideum Ax3 or Δsey1 revealed that Sey1 and GTP promote this process. The LCV-LD interactions were impaired for Δsey1-derived LDs, suggesting that Sey1 regulates LD composition. Palmitate promoted the growth of (i) L. pneumophila wild-type in D. discoideum Ax3 but not in Δsey1 mutant amoeba and (ii) L. pneumophila wild-type but not ΔfadL mutant bacteria lacking a homologue of the E. coli fatty acid transporter FadL. Finally, isotopologue profiling indicated that intracellular L. pneumophila metabolizes 13C-palmitate, and its catabolism was reduced in D. discoideum Δsey1 and L. pneumophila ΔfadL. Taken together, our results reveal that Sey1 mediates LD- and FadL-dependent fatty acid metabolism of intracellular L. pneumophila.
Lipid droplets (LDs) are dynamic and versatile organelles present in most eukaryotic cells. LDs consist of a hydrophobic core of neutral lipids, a phospholipid monolayer coat, and a variety of associated proteins. LDs are formed at the endoplasmic reticulum and have diverse roles in lipid storage, energy metabolism, membrane trafficking, and cellular signaling. In addition to their physiological cellular functions, LDs have been implicated in the pathogenesis of several diseases, including metabolic disorders, cancer, and infections. A number of intracellular bacterial pathogens modulate and/or interact with LDs during host cell infection. Members of the genera Mycobacterium, Legionella, Coxiella, Chlamydia, and Salmonella exploit LDs as a source of intracellular nutrients and membrane components to establish their distinct intracellular replicative niches. In this review, we focus on the biogenesis, interactions, and functions of LDs, as well as on their role in lipid metabolism of intracellular bacterial pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.