Because of the central role of fatty acids in biological systems, their accurate quantification is still important. However, the impact of the complex matrix of biologically and clinically relevant samples such as plasma, serum, or cells makes the analysis still challenging, especially, when free non-esterified fatty acids have to be quantified. Here we developed and characterized a novel GC–MS method using pentafluorobenzyl bromide as a derivatization agent and compared different ionization techniques such as atmospheric pressure chemical ionization (APCI), atmospheric pressure chemical photoionization (APPI), and negative ion chemical ionization (NICI). The GC-APCI-MS showed the lowest limits of detection from 30 to 300 nM for a broad range of fatty acids and a similar response for various fatty acids from a chain length of 10 to 20 carbon atoms. This allows the number of internal standards necessary for accurate quantification to be reduced. Moreover, the use of pentafluorobenzyl bromide allows the direct derivatization of free fatty acids making them accessible for GC–MS analysis without labor-intense sample pretreatment.
For more than a century, fasting regimens have improved health, lifespan, and tissue regeneration in diverse organisms, including humans. However, how fasting and post-fast refeeding impact adult stem cells and tumour formation has yet to be explored in depth. Here, we demonstrate that post-fast refeeding increases intestinal stem cell (ISC) proliferation and tumour formation: Post-fast refeeding augments the regenerative capacity of Lgr5+ intestinal stem cells (ISCs), and loss of the tumour suppressor Apc in ISCs under post-fast refeeding leads to a higher tumour incidence in the small intestine and colon than in the fasted or ad libitum (AL) fed states. This demonstrates that post-fast refeeding is a distinct state. Mechanistically, we discovered that robust induction of mTORC1 in post-fast-refed ISCs increases protein synthesis via polyamine metabolism to drive these changes, as inhibition of mTORC1, polyamine metabolite production, or protein synthesis abrogates the regenerative or tumourigenic effects of post-fast refeeding. Thus, fast-refeeding cycles must be carefully considered when planning diet-based strategies for regeneration without increasing cancer risk, as post-fast refeeding leads to a burst not only in stem cell-driven regeneration but also in tumourigenicity.
Lipidomic studies are often conducted using shotgun mass spectrometry (MS) or reversed-phase liquid chromatography coupled with MS (LC–MS). However, chromatographic separation offers several advantages such as an additional identification parameter (retention time), lower ion suppression, and separation of isobaric species. In contrast, quantification is more difficult because ion suppression is not the same over the whole analysis, and as a consequence more standards are needed to compensate for this. Supercritical fluid chromatography (SFC) offers orthogonal separation compared to reversed-phase LC. While the separation of lipids in reversed-phase LC is mainly based on the length of the carbon chain and the number of double bonds, lipids in SFC are mainly separated according to their lipid classes, which simplifies quantification with standards. In this study, SFC coupled with drift time ion mobility quadrupole time-of-flight mass spectrometry (DTIMS-QTOF-MS)was used to characterize the HepG2 lipidome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.