The building of large-scale Digital Elevation Models (DEMs) using various interpolation algorithms is one of the key issues in geographic information science. Different choices of interpolation algorithms may trigger significant differences in interpolation accuracy and computational efficiency, and a proper interpolation algorithm needs to be carefully used based on the specific characteristics of the scene of interpolation. In this paper, we comparatively investigate the performance of parallel Radial Basis Function (RBF)-based, Moving Least Square (MLS)-based, and Shepard’s interpolation algorithms for building DEMs by evaluating the influence of terrain type, raw data density, and distribution patterns on the interpolation accuracy and computational efficiency. The drawn conclusions may help select a suitable interpolation algorithm in a specific scene to build large-scale DEMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.