Halymenia durvillei is a red alga distributed along the coasts of Southeast Asian countries including Thailand. Previous studies have shown that an ethyl acetate fraction of H. durvillei (HDEA), containing major compounds including n-hexadecanoic acid, 2-butyl-5-hexyloctahydro-1H-indene, 3-(hydroxyacetyl) indole and indole-3-carboxylic acid, possesses high antioxidant and anti-lung cancer activities. The present study demonstrated that HDEA could protect mouse skin fibroblasts (L929) and human immortalized keratinocytes (HaCaT) against photoaging due to ultraviolet A and B (UVA and UVB) by reducing intracellular reactive oxygen species (ROS) and expressions of matrix metalloproteinases (MMP1 and MMP3), as well as increasing Nrf2 nuclear translocation, upregulations of mRNA transcripts of antioxidant enzymes, including superoxide dismutase (SOD), heme oxygenase (HMOX) and glutathione S-transferase pi1 (GSTP1), and procollagen synthesis. The results indicate that HDEA has the potential to protect skin cells from UV irradiation through the activation of the Nrf2 pathway, which leads to decreasing intracellular ROS and MMP production, along with the restoration of skin collagen.
Extracts from a sea cucumber, Holothuria scabra, have been shown to exhibit various pharmacological properties including anti-oxidation, anti-aging, anti-cancer, and anti-neurodegeneration. Furthermore, certain purified compounds from H. scabra displayed neuroprotective effects against Parkinson’s and Alzheimer’s diseases. Therefore, in the present study, we further examined the anti-aging activity of purified H. scabra compounds in a Caenorhabditis elegans model. Five compounds were isolated from ethyl acetate and butanol fractions of the body wall of H. scabra and characterized as diterpene glycosides (holothuria A and B), palmitic acid, bis (2-ethylhexyl) phthalate (DEHP), and 2-butoxytetrahydrofuran (2-BTHF). Longevity assays revealed that 2-BTHF and palmitic acid could significantly extend lifespan of wild type C. elegans. Moreover, 2-BTHF and palmitic acid were able to enhance resistance to paraquat-induced oxidative stress and thermal stress. By testing the compounds’ effects on longevity pathways, it was shown that 2-BTHF and palmitic acid could not extend lifespans of daf-16, age-1, sir-2.1, jnk-1, and skn-1 mutant worms, indicating that these compounds exerted their actions through these genes in extending the lifespan of C. elegans. These compounds induced DAF-16::GFP nuclear translocation and upregulated the expressions of daf-16, hsp-16.2, sod-3 mRNA and SOD-3::GFP. Moreover, they also elevated protein and mRNA expressions of GST-4, which is a downstream target of the SKN-1 transcription factor. Taken together, the study demonstrated the anti-aging activities of 2-BTHF and palmitic acid from H. scabra were mediated via DAF-16/FOXO insulin/IGF and SKN-1/NRF2 signaling pathways.
Parkinson’s disease (PD) is associated with dopaminergic neuron loss and alpha-synuclein aggregation caused by ROS overproduction, leading to mitochondrial dysfunction and autophagy impairment. Recently, andrographolide (Andro) has been extensively studied for various pharmacological properties, such as anti-diabetic, anti-cancer, anti-inflammatory, and anti-atherosclerosis. However, its potential neuroprotective effects on neurotoxin MPP+-induced SH-SY5Y cells, a cellular PD model, remain uninvestigated. In this study, we hypothesized that Andro has neuroprotective effects against MPP+-induced apoptosis, which may be mediated through the clearance of dysfunctional mitochondria by mitophagy and ROS by antioxidant activities. Herein, Andro pretreatment could attenuate MPP+-induced neuronal cell death that was reflected by reducing mitochondrial membrane potential (MMP) depolarization, alpha-synuclein, and pro-apoptotic proteins expressions. Concomitantly, Andro attenuated MPP+-induced oxidative stress through mitophagy, as indicated by increasing colocalization of MitoTracker Red with LC3, upregulations of the PINK1–Parkin pathway, and autophagy-related proteins. On the contrary, Andro-activated autophagy was compromised when pretreated with 3-MA. Furthermore, Andro activated the Nrf2/KEAP1 pathway, leading to increasing genes encoding antioxidant enzymes and activities. This study elucidated that Andro exhibited significant neuroprotective effects against MPP+-induced SH-SY5Y cell death in vitro by enhancing mitophagy and clearance of alpha-synuclein through autophagy, as well as increasing antioxidant capacity. Our results provide evidence that Andro could be considered a potential supplement for PD prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.