Abstract. In this paper we give a new description of the planarity testing and embedding algorithm presented by Boyer and Myrvold [2], providing, in our opinion, new insights on the combinatorial foundations of the algorithm. Especially, we give a detailed illustration of a fundamental phase of the algorithm, called walk-up, which was only succinctly illustrated in [2]. Also, we present an implementation of the algorithm and extensively test its efficiency against the most popular implementations of planarity testing algorithms. Further, as a side effect of the test activity, we propose a general overview of the state of the art (restricted to efficiency issues) of the planarity testing and embedding field.
Abstract. In this paper we study the clustered graphs whose underlying graph is a cycle. This is a simple family of clustered graphs that are "highly non connected". We start by studying 3-cluster cycles, that are clustered graphs such that the underlying graph is a simple cycle and there are three clusters all at the same level. We show that in this case testing the c-planarity can be done efficiently and give an efficient drawing algorithm. Also, we characterize 3-cluster cycles in terms of formal grammars. Finally, we generalize the results on 3-cluster cycles considering clustered graphs that at each level of the inclusion tree have a cycle structure. Even in this case we show efficient c-planarity testing and drawing algorithms.
Consider a planar drawing Γ of a planar graph G such that the vertices are drawn as small circles and the edges are drawn as thin stripes. Consider a non-simple cycle c of G. Is it possible to draw c as a non-intersecting closed curve inside Γ , following the circles that correspond in Γ to the vertices of c and the stripes that connect them? We show that this test can be done in polynomial time and study this problem in the framework of clustered planarity for highly non-connected clustered graphs.
We present the first characterization of c-planarity for c-connected clustered graphs. The characterization is based on the interplay between the hierarchy of the clusters and the hierarchies of the triconnected and biconnected components of the underlying graph. Based on such a characterization, we provide a linear-time c-planarity testing and embedding algorithm for c-connected clustered graphs. The algorithm is reasonably easy to implement, since it exploits as building blocks simple algorithmic tools like the computation of lowest common ancestors, minimum and maximum spanning trees, and counting sorts. It also makes use of well-known data structures as SPQR-trees and BC-trees. If the test fails, the algorithm identifies a structural element responsible for the non-cplanarity of the input clustered graph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.