Inferior parietal lobule (IPL) neurons were studied when monkeys performed motor acts embedded in different actions and when they observed similar acts done by an experimenter. Most motor IPL neurons coding a specific act (e.g., grasping) showed markedly different activations when this act was part of different actions (e.g., for eating or for placing). Many motor IPL neurons also discharged during the observation of acts done by others. Most responded differentially when the same observed act was embedded in a specific action. These neurons fired during the observation of an act, before the beginning of the subsequent acts specifying the action. Thus, these neurons not only code the observed motor act but also allow the observer to understand the agent's intentions.
Evidence suggests that there are differences in the capacity for empathy between males and females. However, how deep do these differences go? Stereotypically, females are portrayed as more nurturing and empathetic, while males are portrayed as less emotional and more cognitive. Some authors suggest that observed gender differences might be largely due to cultural expectations about gender roles. However, empathy has both evolutionary and developmental precursors, and can be studied using implicit measures, aspects that can help elucidate the respective roles of culture and biology. This article reviews evidence from ethology, social psychology, economics, and neuroscience to show that there are fundamental differences in implicit measures of empathy, with parallels in development and evolution. Studies in nonhuman animals and younger human populations (infants/children) offer converging evidence that sex differences in empathy have phylogenetic and ontogenetic roots in biology and are not merely cultural byproducts driven by socialization. We review how these differences may have arisen in response to males’ and females’ different roles throughout evolution. Examinations of the neurobiological underpinnings of empathy reveal important quantitative gender differences in the basic networks involved in affective and cognitive forms of empathy, as well as a qualitative divergence between the sexes in how emotional information is integrated to support decision making processes. Finally, the study of gender differences in empathy can be improved by designing studies with greater statistical power and considering variables implicit in gender (e.g., sexual preference, prenatal hormone exposure). These improvements may also help uncover the nature of neurodevelopmental and psychiatric disorders in which one sex is more vulnerable to compromised social competence associated with impaired empathy.
In the ventral premotor cortex (area F5) of the monkey there are neurons that discharge both when the monkey performs specific motor actions and when it observes another individual performing a similar action (mirror neurons). Previous studies on mirror neurons concerned hand actions. Here, we describe the mirror responses of F5 neurons that motorically code mouth actions. The results showed that about one-third of mouth motor neurons also discharge when the monkey observes another individual performing mouth actions. The majority of these 'mouth mirror neurons' become active during the execution and observation of mouth actions related to ingestive functions such as grasping, sucking or breaking food. Another population of mouth mirror neurons also discharges during the execution of ingestive actions, but the most effective visual stimuli in triggering them are communicative mouth gestures (e.g. lip smacking). Some also fire when the monkey makes communicative gestures. These findings extend the notion of mirror system from hand to mouth action and suggest that area F5, the area considered to be the homologue of human Broca's area, is also involved in communicative functions.
A fundamental issue in cognitive neuroscience is how the brain encodes others’ actions and intentions. In recent years, a potential advance in our knowledge on this issue is the discovery of mirror neurons in the motor cortex of the nonhuman primate. These neurons fire to both execution and observation of specific types of actions. Researchers use this evidence to fuel investigations of a human mirror system, suggesting a common neural code for perceptual and motor processes. Among the methods used for inferring mirror system activity in humans are changes in a particular frequency band in the electroencephalogram (EEG) called the mu rhythm. Mu frequency appears to decrease in amplitude (reflecting cortical activity) during both action execution and action observation. The current meta-analysis reviewed 85 studies (1,707 participants) of mu that infer human mirror system activity. Results demonstrated significant effect sizes for mu during execution (Cohen’s d = 0.46, N = 701) as well as observation of action (Cohen’s d = 0.31, N = 1,508), confirming a mirroring property in the EEG. A number of moderators were examined to determine the specificity of these effects. We frame these meta-analytic findings within the current discussion about the development and functions of a human mirror system, and conclude that changes in EEG mu activity provide a valid means for the study of human neural mirroring. Suggestions for improving the experimental and methodological approaches in using mu to study the human mirror system are offered.
The general view on the functional role of the monkey inferior parietal lobule (IPL) convexity mainly derives from studies carried out more than two decades ago and does not account for the functional complexity suggested by more recent neuroanatomical findings. We investigated this issue by recording multi- and single units in the IPL convexity of two monkeys and characterizing their somatosensory, visual and motor responses, using a naturalistic (ethologically relevant) approach. These properties were then matched with IPL cytoarchitectonic parcellation. A further aim of this study was to describe the general properties and the localization of IPL mirror neurons, until now not investigated in detail. Results showed that each studied cytoarchitectonic subdivision of the IPL (PF, PFG, PG) is characterized by specific sensory and motor properties. A key feature of the recorded motor neurons is that of coding goal-directed motor acts. Motor responses are somatotopically organized in a rostro-caudal fashion, with mouth, hand and arm represented in PF, PFG and PG, respectively, with a certain degree of overlap between adjacent representations. In each subdivision the motor activity is associated with specific somatosensory and visual responses, suggesting that each area organizes motor acts in different space sectors. Mirror neurons have been found mainly in area PFG and their general features appear to be very similar to those of ventral premotor mirror neurons. The present data suggest that the IPL plays an important role in both action organization and action understanding and should be considered part of the motor system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.