The objective of the Naudur cruise (December 1993) of the submersible Nautile was to study the interaction among magmatic, tectonic, and hydrothermal processes at a very fast spreading mid‐ocean ridge axis. Twenty‐three dives were completed, both along and across the axis, in four areas located between 17°10′ and 18°45′S on the East Pacific Rise. Rock, sulfides, water, and biological samples have been collected along each of the segments. Two main types of segments have been distinguished, characterized either by the predominance of present‐day volcanic activity or by predominant tectonic activity. Linked to both types of activity, 69 hydrothermal sites have been discovered and sampled. They comprise four types, interpreted as successive evolutionary stages. The first are shimmering water sites which occur immediately after the formation of lava lakes and are characterized by large surface area and poorly developed associated fauna. The second, in areas dominated by recent volcanic activity, have waters venting directly from lava fissures and more focused discharge areas through black smoker chimneys. The third stage is represented by more mature hydrothermal vents and deposits, along the faults bounding the eastern side of the axial graben in tectonic‐dominated areas. The associated fauna is well developed. The fourth stage corresponds to the reactivation of volcanic activity with lava flows, young black smokers, and diffuse venting associated with the faults bounding the axial graben. Fluids collected range from 200° to 340°C and show a wide variability in chemical and gas composition. Within each of the explored areas, evidence of recent volcanic activity has been observed.
[1] In SW Colombia picritic pillow lavas and tuffs, as well as breccias composed of picritic clasts, occur interspersed with basalts of the Central Cordillera and represent accreted portions of the $90 Ma Colombian/Caribbean oceanic plateau (CCOP). We present new geochemical data for these picrites and high-MgO basalts from SW Colombia, along with new data from Deep Sea Drilling Project Leg 15 drill sites. The 40 Ar/ 39 Ar ages for the CCOP in the Central Colombian Cordillera range from 87 to 93 Ma. Both SW Colombia picrites and Leg 15 basalts are compositionally diverse and range from reasonably enriched ((La/Nd) n > 1 and (e Nd ) i < +4.1) to relatively depleted ((La/Nd) n < 1 and (e Nd ) i > +8.0). Nb/Y and Zr/Y systematics suggest that the depleted component is not depleted MORB mantle, but is an intrinsic part of the plume. The bulk of the CCOP compositions can be explained by mixing between this depleted mantle and a HIMU component. However, radiogenic isotope systematics indicate the presence of an EM2 (or possibly EM1) component within the plume. Mantle melt modeling suggests that the enriched magma types are the product of deeper, small degree melting of a pervasively heterogeneous plume comprising a refractory matrix with enriched streaks/blobs, whereas shallower, more extensive melting, results in the formation of relatively depleted magmas.
New Sr- Nd- and Pb-isotopic and trace element data are presented on basalts from the Sulu and Celebes Basins, and the submerged Cagayan Ridge Arc (Western Pacific), recently sampled during Ocean Drilling Program Leg 124. Drilling has shown that the Sulu Basin developed about 18 Ma ago as a backarc basin, associated with the now submerged Cagayan Ridge Arc, whereas the Celebes Basin was generated about 43 Ma ago, contemporaneous with a general plate reorganisation in the Western Pacific, subsequently developing as an open ocean receiving pelagic sediments until the middle Miocene. In both basins, a late middle Miocene collision phase and the onset of volcanic activity on adjacent arcs in the late Miocene are recorded. Covariations between 87Sr/86Sr and 143Nd/144Nd show that the seafloor basalts from both the Sulu and Celebes Basins are isotopically similar to depleted Indian mid-ocean ridge basalts (MORB), and distinct from East Pacific Rise MORB, defining a single negative correlation. The Cagayan Arc volcanics are different, in that they have distinctly lower ɛNd(T) for a given ɛSr(T), compared to Sulu and Celebes basalts. In the 207Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams, the Celebes, Sulu and Cagayan rocks all plot distinctly above the Northern Hemisphere Reference Line, with high Δ7/4 Pb (5.3–9.3) and D8/4 Pb (46.3–68.1) values. They define a single trend of radiogenic lead enrichment from Celebes through Sulu to Cagayan Ridge, within the Indian Ocean MORB data field. The data suggest that the overall chemical and isotopic features of the Sulu, Cagayan and Celebes rocks may be explained by partial melting of a depleted asthenospheric N-MORB-type (“normal”) mantle source with isotopic characteristics similar to those of the Indian Ocean MORB source. This asthenospheric source was slightly heterogeneous, giving rise to the Sr-Nd isotopic differences between the Celebes and Sulu basalts, and the Cagayan Ridge volcanics. In addition, a probably slab-derived component enriched in LILE and LREE is required to generate the elemental characteristics and low Nd(T) of the Cagayan Ridge island arc tholeiitic and calcalkaline lavas, and to contribute to a small extent in the backarc basalts of the Sulu Sea. The results of this study confirm and extend the widespread Indian Ocean MORB signature in the Western Pacific region. This signature could have been inherited by the Indian Ocean mantle itself during the rupture of Gondwanaland, when fragments of this mantle could have migrated towards the present position of the Celebes, Sulu and Cagayan sources
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.