Purpose This study aims to evaluate and compare the macroscopic properties of commercial acrylonitrile-butadiene-styrene (ABS) processed by two different types of additive manufacturing (AM) machines. The focus is also on the effect of multiple closed-loop recycling of ABS. Design/methodology/approach A conventional direct-drive, Cartesian-type machine and a Bowden, Delta-type machine with an infrared radiant heating system are used to manufacture test specimens molded in ABS. Afterward, multiple closed-loop recycling cycles are conducted, involving consecutive AM (four times) and recycling (three times). The rheological, mechanical, morphological and physicochemical properties are investigated. Findings The type of machine affects the quality of the produced parts. The machine containing an infrared radiant system in a temperature-controlled chamber produces parts showing higher mechanical properties and filling fraction, although it increases the yellowing. Closed-loop recycling of ABS for AM is applicable for at least two cycles, inducing a slight increase in tensile modulus (ca. 5%) and in tensile strength (ca. 13%) and a decrease in the impact strength (ca. 14%) and melt viscosity. An increase in the filling fraction of the AM parts promotes an increase in tensile strength and tensile modulus, although it does not influence the impact strength. Furthermore, multiple closed-loop recycling does not affect the overall chemical structure of ABS. Practical implications Controlling the environmental temperature and using infrared radiant heating during AM of ABS improves the quality of the produced parts. Closed-loop recycling of ABS used in AM is feasible up to at least two recycling steps, supporting the implementation of a circular economy for polymer-based AM. Originality/value This study shows original results regarding the assessment of the effect of different types of AM machines on the main end-use properties of ABS parts and the influence of multiple closed-loop recycling on the characteristics of ABS fabricated by the most suited AM machine with an infrared radiant heating system and a temperature-controlled environment.
Material extrusion additive manufacturing enables us to combine more materials in the same nozzle during the deposition process. This technology, called material coextrusion, generates an expanded range of material properties, which can gradually change in the design domain, ensuring blending or higher bonding/interlocking among the different materials. To exploit the opportunities offered by these technologies, it is necessary to know the behavior of the combined materials according to the materials fractions. In this work, two compatible pairs of materials, namely Polylactic Acid (PLA)-Thermoplastic Polyurethane (TPU) and Acrylonitrile Styrene Acrylate (ASA)-TPU, were investigated by changing the material fractions in the coextrusion process. An original model describing the distribution of the materials is proposed. Based on this, the mechanical properties were investigated by analytical and numerical approaches. The analytical model was developed on the simplified assumption that the coextruded materials are a set of rods, whereas the more realistic numerical model is based on homogenization theory, adopting the finite element analysis of a representative volume element. To verify the deposition model, a specific experimental test was developed, and the modeled material deposition was superimposed and qualitatively compared with the actual microscope images regarding the different deposition directions and material fractions. The analytical and numerical models show similar trends, and it can be assumed that the finite element model has a more realistic behavior due to the higher accuracy of the model description. The elastic moduli obtained by the models was verified in experimental tensile tests. The tensile tests show Young’s moduli of 3425 MPa for PLA, 1812 MPa for ASA, and 162 MPa for TPU. At the intermediate material fraction, the Young’s modulus shows an almost linear trend between PLA and TPU and between ASA and TPU. The ultimate tensile strength values are 63.9 MPa for PLA, 35.7 MPa for ASA, and 63.5 MPa for TPU, whereas at the intermediate material fraction, they assume lower values. In this initial work, the results show a good agreement between models and experiments, providing useful tools for designers and contributing to a new branch in additive manufacturing research.
Nowadays, the use of 3D printing is becoming a key process for on-demand and customized manufacturing. One of the most flexible 3D printing techniques is fused deposition modeling (FDM), where the combination of multiple materials was recently introduced. A quantum leap in part design is possible by integrating local variations between materials that allow for expanded functionality to be built into a single part. Therefore, the process of co-extrusion and material mixing is becoming more and more popular. The process of management and design of the engineered part are still complicated, and there are no commercially available tools that follow the process from design to production of these highly engineered products. This paper proposes a methodology to fill this gap and allow any designer to be able to produce multi-material parts by editing a G-code (computer numerical control programming language) with engineered gradients for FDM technology. More specifically, the proposed approach is based on the modification of the G-code according to a volumetric model describing the local combination of two or more materials. This original aspect allows for a wide extension of the current software capabilities. To explain and test the method, a simple test case was investigated, in which two components of an earphone are consolidated and developed gradually by combining polylactic acid and thermoplastic polyurethane. The results show the effectiveness of the proposed approach within the limits of the material coextrusion additive manufacturing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.