BackgroundThe accurate delimitation of species is essential to numerous areas of biological research. An unbiased assessment of the diversity, including the cryptic diversity, is of particular importance for the below ground fauna, a major component of global biodiversity. On the British Isles, the epigeic earthworm Lumbricus rubellus, which is a sentinel species in soil ecotoxicology, consists of two cryptic taxa that are differentiated in both the nuclear and the mitochondrial (mtDNA) genomes. Recently, several deeply divergent mtDNA lineages were detected in mainland Europe, but whether these earthworms also constitute cryptic species remains unclear. This information is important from an evolutionary perspective, but it is also essential for the interpretation and the design of ecotoxicological projects. In this study, we used genome-wide RADseq data to assess the reproductive isolation of the divergent mitochondrial lineages of L. rubellus that occur in sympatry in multiple localities in Central Europe.ResultsWe identified five divergent (up to 16 % net p-distance) mitochondrial lineages of L. rubellus in sympatry. Because the clustering of the RADseq data was according to the population of origin and not the mtDNA lineage, reproductive isolation among the mtDNA lineages was not likely. Although each population contained multiple mtDNA lineages, subdivisions within the populations were not observed for the nuclear genome. The lack of fixed differences and sharing of the overwhelming majority of nuclear polymorphisms between localities, indicated that the populations did not constitute allopatric species. The nucleotide diversity within the populations was high, 0.7–0.8 %.ConclusionsThe deeply divergent mtDNA sympatric lineages of L. rubellus in Central Europe were not reproductively isolated groups. The earthworm L. rubellus, which is represented by several mtDNA lineages in continental Europe, apparently is a single highly polymorphic species rather than a complex of several cryptic species. This study demonstrated the critical importance of the use of multilocus nuclear data for the unbiased assessment of cryptic diversity and for the delimitation of species in soil invertebrates.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-015-0488-9) contains supplementary material, which is available to authorized users.
The Pheretima complex within the Megascolecidae family is a major earthworm group. Recently, the systematic status of the Pheretima complex based on morphology was challenged by molecular studies. In this study, we carry out the first comparative mitogenomic study in oligochaetes. The mitogenomes of 15 earthworm species were sequenced and compared with other 9 available earthworm mitogenomes, with the main aim to explore their phylogenetic relationships and test different analytical approaches on phylogeny reconstruction. The general earthworm mitogenomic features revealed to be conservative: all genes encoded on the same strand, all the protein coding loci shared the same initiation codon (ATG), and tRNA genes showed conserved structures. The Drawida japonica mitogenome displayed the highest A + T content, reversed AT/GC-skews and the highest genetic diversity. Genetic distances among protein coding genes displayed their maximum and minimum interspecific values in the ATP8 and CO1 genes, respectively. The 22 tRNAs showed variable substitution patterns between the considered earthworm mitogenomes. The inclusion of rRNAs positively increased phylogenetic support. Furthermore, we tested different trimming tools for alignment improvement. Our analyses rejected reciprocal monophyly among Amynthas and Metaphire and indicated that the two genera should be systematically classified into one.
BackgroundPopulations of the earthworm, Lumbricus rubellus, are commonly found across highly contaminated former mine sites and are considered to have under-gone selection for mitigating metal toxicity. Comparison of adapted populations with those found on less contaminated soils can provide insights into ecological processes that demonstrate the long-term effects of soil contamination. Contemporary sequencing methods allow for portrayal of demographic inferences and highlight genetic variation indicative of selection at specific genes. Furthermore, the occurrence of L. rubellus lineages across the UK allows for inferences of mechanisms associated with drivers of speciation and local adaptation.ResultsUsing RADseq, we were able to define population structure between the two lineages through the use of draft genomes for each, demonstrating an absence of admixture between lineages and that populations over extensive geographic distances form discrete populations. Between the two British lineages, we were able to provide evidence for selection near to genes associated with epigenetic and morphological functions, as well as near a gene encoding a pheromone. Earthworms inhabiting highly contaminated soils bare close genomic resemblance to those from proximal control soils. We were able to define a number of SNPs that largely segregate populations and are indicative of genes that are likely under selection for managing metal toxicity. This includes calcium and phosphate-handling mechanisms linked to lead and arsenic contaminants, respectively, while we also observed evidence for glutathione-related mechanisms, including metallothionein, across multiple populations. Population genomic end points demonstrate no consistent reduction in nucleotide diversity, or increase in inbreeding coefficient, relative to history of exposure.ConclusionsThough we can clearly define lineage membership using genomic markers, as well as population structure between geographic localities, it is difficult to resolve markers that segregate entirely between populations in response to soil metal concentrations. This may represent a highly variable series of traits in response to the heterogenous nature of the soil environment, but ultimately demonstrates the maintenance of lineage-specific genetic variation among local populations. L. rubellus appears to provide an exemplary system for exploring drivers for speciation, with a continuum of lineages coexisting across continental Europe, while distinct lineages exist in isolation throughout the UK.Electronic supplementary materialThe online version of this article (10.1186/s12863-017-0557-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.