We derive the effective energy density of thin membranes of liquid crystal elastomers as the -limit of a widely used bulk model. These membranes can display fine-scale features both due to wrinkling that one expects in thin elastic membranes and due to oscillations in the nematic director that one expects in liquid crystal elastomers. We provide an explicit characterization of the effective energy density of membranes and the effective state of stress as a function of the planar deformation gradient. We also provide a characterization of the fine-scale features. We show the existence of four regimes: one where wrinkling and microstructure reduces the effective membrane energy and stress to zero, a second where wrinkling leads to uniaxial tension, a third where nematic oscillations lead to equi-biaxial tension and a fourth with no fine scale features and biaxial tension. Importantly, we find a region where one has shear strain but no shear stress and all the fine-scale features are in-plane with no wrinkling.
We consider models that describe liquid crystal elastomers either in a biaxial or in a uniaxial phase and in the framework of Frank's director theory. We prove the existence of static equilibrium solutions in the presence of frustrations due to electro-mechanical boundary conditions and to applied loads and fields. We find explicit solutions arising in connection with special boundary conditions and the corresponding phase diagrams, leading to significant implications on possible experimental observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.