Abstract. One can reduce the problem of proving that a polynomial is nonnegative, or more generally of proving that a system of polynomial inequalities has no solutions, to finding polynomials that are sums of squares of polynomials and satisfy some linear equality (Positivstellensatz ). This produces a witness for the desired property, from which it is reasonably easy to obtain a formal proof of the property suitable for a proof assistant such as Coq. The problem of finding a witness reduces to a feasibility problem in semidefinite programming, for which there exist numerical solvers. Unfortunately, this problem is in general not strictly feasible, meaning the solution can be a convex set with empty interior, in which case the numerical optimization method fails. Previously published methods thus assumed strict feasibility; we propose a workaround for this difficulty. We implemented our method and illustrate its use with examples, including extractions of proofs to Coq.
Abstract. We propose a general framework to build certified proofs of distributed selfstabilizing algorithms with the proof assistant Coq. We first define in Coq the locally shared memory model with composite atomicity, the most commonly used model in the self-stabilizing area. We then validate our framework by certifying a non trivial part of an existing silent self-stabilizing algorithm which builds a k-clustering of the network. We also certify a quantitative property related to the output of this algorithm. Precisely, we show that the computed k-clustering contains at most n−1 k+1 + 1 clusterheads, where n is the number of nodes in the network. To obtain these results, we also developed a library which contains general tools related to potential functions and cardinality of sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.