In literature, prognostics and health management (PHM) systems have been studied by many researchers from many different engineering fields to increase system reliability, availability, safety and to reduce the maintenance cost of engineering assets. Many works conducted in PHM research concentrate on designing robust and accurate models to assess the health state of components for particular applications to support decision making. Models which involve mathematical interpretations, assumptions and approximations make PHM hard to understand and implement in real world applications, especially by maintenance practitioners in industry. Prior knowledge to implement PHM in complex systems is crucial to building highly reliable systems. To fill this gap and motivate industry practitioners, this paper attempts to provide a comprehensive review on PHM domain and discusses important issues on uncertainty quantification, implementation aspects next to prognostics feature and tool evaluation. In this paper, PHM implementation steps consists of; (1) critical component analysis, (2) appropriate sensor selection for condition monitoring (CM), (3) prognostics feature evaluation under data analysis and (4) prognostics methodology and tool evaluation matrices derived from PHM literature. Besides PHM implementation aspects, this paper also reviews previous and on-going research in high-speed train bogies to highlight problems faced in train industry and emphasize the significance of PHM for further investigations.
This paper presents a condition monitoring approach for point machine prognostics to increase the reliability, availability, and safety in railway transportation industry. The proposed approach is composed of three steps: 1) health indicator (HI) construction by data fusion, 2) health state assessment, and 3) failure prognostics. In Step 1, the time-domain features are extracted and evaluated by hybrid and consistency feature evaluation metrics to select the best class of prognostics features. Then, the selected feature class is combined with the adaptive feature fusion algorithm to build a generic point machine HI. In Step 2, health state division is accomplished by time-series segmentation algorithm using the fused HI. Then, fault detection is performed by using a support vector machine classifier. Once the faulty state has been classified (i.e., incipient/starting fault), the single spectral analysis recurrent forecasting is triggered to estimate the component remaining useful life. The proposed methodology is validated on in-field point machine sliding-chair degradation data. The results show that the approach can be effectively used in railway point machine monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.