Shot peen forming is a cold work process used to shape thin metallic components by bombarding them with small shots at high velocities. Several simulation procedures have been reported in the literature for this process, but their predictive capabilities remain limited as they systematically require some form of calibration or empirical adjustments. We intend to show how procedures based on the concept of eigenstrains, which were initially developed for applications in other fields of residual stress engineering, can be adapted to peen forming and stress-peen forming. These tools prove to be able to reproduce experimental results when the plastic strain field that develop inside a part is known with sufficient accuracy. They are, however, not mature enough to address the forming of panels that are free to deform during peening. For validation purposes, we peen formed several 1 by 1 meter 2024-T3 aluminum alloy panels. These experiments revealed a transition from spherical to cylindrical shapes as the panel thickness is decreased for a given treatment, that we show results from an elastic instability.
Aluminium skins on the lower wings of most commercial aircraft are shaped using shot peen forming. This process, which involves bombarding the skins with hard shot, uses nonuniform plastic flow to induce curvatures—in the same way that differential expansion makes metal bilayers bend when heated. Here, we investigate experimentally how constraining conditions affect the final shape of peen formed parts. We report peen forming experiments for 4.9‐mm‐thick rectangular 2024–T3 aluminium sheets of different aspect ratios uniformly shot peened on one face with a low intensity saturation treatment. Some specimens were free to deform during peening while others were elastically prestressed in a four‐point bending jig. For each aspect ratio and prestress condition, residual stresses were measured near the peened surface with the hole drilling method. Additional residual stress profiles were also obtained with the slitting method. The residual stress measurements show that the progressive deformation of unconstrained specimens had the same effect as an externally applied prestress. For the peening conditions investigated, this progressive deformation caused unconstrained strips to exhibit curvatures 33% larger than identical strips held flat during peening. Furthermore, we found that the relative importance of material anisotropy and geometric effects did determine the bending direction of unconstrained specimens.
Aluminum skins on the lower wings of most commercial aircraft are shaped using shot peen forming. This process, which involves bombarding the skins with hard shot, uses nonuniform plastic flow to induce curvatures---in the same way that differential expansion makes metal bilayers bend when heated. Here, we investigate experimentally how constraining conditions affect the final shape of peen formed parts. We report peen forming experiments for 4.9 mm thick rectangular 2024-T3 aluminum sheets of different aspect ratios uniformly shot peened on one face with a low intensity saturation treatment. Some specimens were free to deform during peening while others were elastically prestressed in a four-point bending jig. For each aspect ratio and prestress condition, residual stresses were measured near the peened surface with the hole drilling method. Additional residual stress profiles were also obtained with the slitting method. The residual stress measurements show that the progressive deformation of unconstrained specimens had the same effect as an externally applied prestress. For the peening conditions investigated, this progressive deformation caused unconstrained strips to exhibit curvatures 33% larger than identical strips held flat during peening. Furthermore, we found that the relative importance of material anisotropy and geometric effects did determine the bending direction of unconstrained specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.