This paper presents MINDWALKER, which is an ambitious EC funded research project coordinated by Space Applications Services aiming at the development of novel Brain Neural Computer Interfaces (BNCI) and robotics technologies, with the goal of obtaining a crutch-less assistive lower limbs exoskeleton, with non-invasive brain control approach as main strategy. Complementary BNCI control approaches such as arms electromyograms (EMG) are also researched. In the last phase of the project, the developed system should undergo a clinical evaluation with Spinal Cord Injured (SCI) subjects at the Fondazione Santa Lucia, Italy. I. INTRODUCTION INDWALKWER [1] is funded by EC under an ICT research programme named e-Inclusion, that aims at improving inclusion in social life of European individuals, in particular those with reduced mobility (due to e.g. disability).The research question that initiated this project can be stated following this way: could a lower limbs assistive exoskeleton system allow SCI subjects to recover mobility, relying on convenient, non-invasive BNCI control signals acquisition -EEG based as far as possible, and without the need for stability improvement accessories such as crutches (that cannot be used by quadriplegic subjects, and that prevent paraplegic subjects from using their arms and hands Manuscript received April 30 th , 2012. MINDWALKER is supported in part by the European Commission through the FP7 Programme, with project reference ICT-2009-247959 (Health, e-Inclusion). MINDWALKER is member of the Future BNCI European network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.