BackgroundLignocellulosic biomass will progressively become the main source of carbon for a number of products as the Earth’s oil reservoirs disappear. Technology for conversion of wood fiber into bioproducts (wood biorefining) continues to flourish, and access to reliable methods for monitoring modification of such fibers is becoming an important issue. Recently, we developed a simple, rapid approach for detecting four different types of polymer on the surface of wood fibers. Named fluorescent-tagged carbohydrate-binding module (FTCM), this method is based on the fluorescence signal from carbohydrate-binding modules-based probes designed to recognize specific polymers such as crystalline cellulose, amorphous cellulose, xylan, and mannan.ResultsHere we used FTCM to characterize pulps made from softwood and hardwood that were prepared using Kraft or chemical-thermo-mechanical pulping. Comparison of chemical analysis (NREL protocol) and FTCM revealed that FTCM results were consistent with chemical analysis of the hemicellulose composition of both hardwood and softwood samples. Kraft pulping increased the difference between softwood and hardwood surface mannans, and increased xylan exposure. This suggests that Kraft pulping leads to exposure of xylan after removal of both lignin and mannan. Impact of enzyme cocktails from Trichoderma reesei (Celluclast 1.5L) and from Aspergillus sp. (Carezyme 1000L) was investigated by analysis of hydrolyzed sugars and by FTCM. Both enzymes preparations released cellobiose and glucose from pulps, with the cocktail from Trichoderma being the most efficient. Enzymatic treatments were not as effective at converting chemical-thermomechanical pulps to simple sugars, regardless of wood type. FTCM revealed that amorphous cellulose was the primary target of either enzyme preparation, which resulted in a higher proportion of crystalline cellulose on the surface after enzymatic treatment. FTCM confirmed that enzymes from Aspergillus had little impact on exposed hemicelluloses, but that enzymes from the more aggressive Trichoderma cocktail reduced hemicelluloses at the surface.ConclusionsOverall, this study indicates that treatment with enzymes from Trichoderma is appropriate for generating crystalline cellulose at fiber surface. Applications such as nanocellulose or composites requiring chemical resistance would benefit from this enzymatic treatment. The milder enzyme mixture from Aspergillus allowed for removal of amorphous cellulose while preserving hemicelluloses at fiber surface, which makes this treatment appropriate for new paper products where surface chemical responsiveness is required.Electronic supplementary materialThe online version of this article (10.1186/s13068-017-0980-0) contains supplementary material, which is available to authorized users.
Introduction. Dans un monde qui cherche à se défaire de sa dépendance à la pétrochimie, le concept de bioraffinage de la biomasse forestière est de plus en plus étudié. Dans une recherche de valorisation maximale des composants de cette biomasse, la transformation de fibres de cellulose en nanocellulose séduit de plus en plus l’industrie papetière par sa haute valeur ajoutée. Littérature. Le concept de bioraffinage forestier intégré vise l’adaptation des usines de pâte à papier en bioraffineries où un maximum de coproduits sont valorisés. Au départ de la cellulose contenue dans la pâte, deux types de nanocellulose peuvent être obtenus en déstructurant les fibres selon différents moyens. Comme elle génère des coproduits valorisables, l’hydrolyse enzymatique constitue un moyen de production de nanocellulose mais doit néanmoins être combinée à des traitements mécaniques. La production de nanocellulose au départ de pâte à papier chimique est une étape de fin de chaine qui peut même s’envisager sans modifier le fonctionnement des usines actuelles. La viabilité économique de cette production et la taille du marché potentiel sont l’objet d’études récentes qui s’avèrent encourageantes. Conclusions. La nanocellulose est un biomatériau d’avenir dont le domaine d’application ne cesse de grandir. La cellulose contenue dans la pâte à papier peut servir de matière première à la production de nanocellulose à l’aide de prétraitements enzymatiques générateurs de coproduits valorisables. Cette production peut s’intégrer dans une usine chimique classique de pâte et constituer ainsi un élargissement de la gamme de produits proposés par l’industrie papetière.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.