The increasing demand for water and the decrease in global water resources require research into alternative solutions to preserve them. The present study deals with the optimization of a treatment process, i.e. an aerobic fluidized bed reactor and the modelling of the degradation that takes place within it. The methodology employed is based on the hydrodynamics of the treatment process linked to the biodegradation kinetics of greywater coming from a washing machine. The residence time distribution (RTD) approach is selected for the hydrodynamic study. Biodegradation kinetics are quantified by respirometry and dissolved organic carbon (DOC) analysis on several mass quantities of colonized particles. RTD determinations show that there are no dysfunctions in the fluidized bed. Its hydrodynamic behaviour is similar to the one of a continuous stirred-tank reactor. A first-order reaction is obtained from the DOC biodegradation study. A model describing the degradation that takes place into the reactor is proposed, and from a sensitive study, the influence of the operating conditions on DOC biodegradation is defined. The theoretical results calculated from the first-order equation C(t) = 0.593 x C(0) x e(-kt) are compared with the experimental results and validated by a Student test. The value of the kinetic constant k is 0.011 h(-1) in the presence of a biomass carrier. The results highlight that it is possible to design a reactor in order to obtain a carbon content lower than 15 mg C L(-1) when the characteristics of raw greywater are known.
CO2 blends provide tremendous advantages when used as a working fluid in transcritical power cycles with respect to pure CO2. The benefits become especially apparent if coupled with concentrated solar power since increasing the critical temperature of the blend with respect to pure CO2 allows dry condensing at high ambient temperatures in locations of high solar radiation. One key cycle component is the cooler, which in this work is designed as an air-cooled condenser with a MATLAB in-house code. The internal, condensation heat transfer model used in this paper relies on a correlation developed by Cavallini (2006). The model itself is validated against experimental data from a test rig for heat transfer measurements on a CO2 + R1234ze(E) mixture. The resulting design of the condenser is compared with the commercial software HTRI for a specific case study which is representative of the condenser of a recuperated cycle working with a CO2 + C6F6 blend. The authors also present an upgraded heat exchanger design with microfinned tubes, the DIESTA tubes, and groovy fins on the air side. The design of the heat exchanger adopting the mixture is compared to a case with pure CO2 as the working fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.