Chunking of single movements into integrated sequences has been described during motor learning, and we have recently demonstrated that this process involves a dopamine-dependant mechanism in animal (Levesque et al. in Exp Brain Res 182:499-508, 2007; Tremblay et al. in Behav Brain Res 198:231-239, 2009). However, there is no such evidence in human. The aim of the present study was to assess this question in Parkinson's disease (PD), a neurological condition known for its dopamine depletion in the striatum. Eleven PD patients were tested under their usual levodopa medication (ON state), and following a 12-h levodopa withdrawal (OFF state). Patients were compared with 12 healthy participants on a motor learning sequencing task, requiring pressing fourteen buttons in the correct order, which was determined by visual stimuli presented on a computer screen. Learning was assessed from three blocks of 20 trials administered successively. Chunks of movements were intrinsically created by each participant during this learning period. Then, the sequence was shuffled according to the participant's own chunks, generating two new sequences, with either preserved or broken chunks. Those new motor sequences had to be performed separately in a fourth and fifth blocks of 20 trials. Results showed that execution time improved in every group during the learning period (from blocks 1 to 3). However, while motor chunking occurred in healthy controls and ON-PD patients, it did not in OFF-PD patients. In the shuffling conditions, a significant difference was seen between the preserved and the broken chunks conditions for both healthy participants and ON-PD patients, but not for OFF-PD patients. These results suggest that movement chunking during motor sequence learning is a dopamine-dependent process in human.
Results obtained in patients with schizophrenia have shown that antipsychotic drugs may induce motor learning deficits correlated with the striatal type-2 dopamine receptors (D(2)R) occupancy. Other findings suggest that the role of the striatum in motor learning could be related to a process of "chunking" discrete movements into motor sequences. We therefore hypothesized that a D(2)R blocking substance, such as raclopride, would affect motor learning by specifically disrupting the grouping of movements into sequences. Two monkeys were first trained to perform a baseline-overlearned sequence (Seq. A) drug free. Then, a new sequence was learned (Seq. B) and the overlearned sequence was recalled OFF-drug (Seq. A recall OFF-drug). The effect of raclopride was then assessed on the learning of a third sequence (Seq. C), and on the recall of the overlearned sequence (Seq. A recall ON-drug). Results showed that performance related to the overlearned sequence remained the same in the three experimental conditions (Seq. A, Seq. A recall OFF-drug, Seq. A recall ON-drug), whether the primates received raclopride or not. On the other hand, new sequence learning was significantly affected during raclopride treatment (Seq. C), when compared with new sequence learning without the effect of any drug (Seq. B). Raclopride-induced disturbances consisted in performance fluctuations, which persisted even after many days of trials, and prevented the monkeys from reaching a stable level of performance. Further analyses also showed that these fluctuations appeared to be related to monkeys' inability to group movements into single flowing motor sequences. The results of our study suggest that dopamine is involved in the stabilization or consolidation of motor performances, and that this function would involve a chunking of movements into well-integrated sequences.
Sensorimotor adaptation is thought to involve a remapping of the kinematic and kinetic parameters associated with movements performed within a changing environment. Patients with Parkinson's disease (PD) are known to be affected on this type of learning process, although the specific role of dopamine depletion in these deficits has not yet been elucidated. The present study was an attempt to clarify whether dopamine depletion in PD may directly affect the capacity to internally reorganize the visuomotor remapping of a distorted environment. Fourteen PD patients were tested twice, while they were treated and while they were withdrawn from their regular levodopa treatment. Fourteen control subjects were also enrolled and tested twice. Two parallel forms of the Computed Mirror Pointing Task (CMPT), requiring making a reaching movement in a visually transformed environment (mirror inversion), were administered to each participant. Each of them had to perform 40 trials at each of the 2 testing sessions. At each trial, sensorimotor adaptation was evaluated by the initial direction angle (IDA), which reflects the direction of movement before any visually guided readjustment. Results revealed no IDA difference at baseline, between control subject and PD patients, whether they were treated or not. In all group, IDA values at that time were large, reflecting a tendency to make movements according to the real life visuomotor mapping (based on the natural direct vision). However, striking differences appeared during sensorimotor learning, in that IDA reduction along trials was poorer in patient not treated with levodopa than both control subjects and the same PD patient treated with levodopa. No difference was observed between the treated PD patients and control subjects. Given that IDA is thought to reflect the internal representation of the visuomotor mapping, it is concluded that dopamine depletion in PD would affects sensorimotor adaptation, in that it facilitates old and poorly adapted movements (real life mapping), instead of new and more adapted ones (mirror transformed mapping).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.