BackgroundMany authors have claimed that snakebite risk is associated with human population density, human activities, and snake behavior. Here we analyzed whether environmental suitability of vipers can be used as an indicator of snakebite risk. We tested several hypotheses to explain snakebite incidence, through the construction of models incorporating both environmental suitability and socioeconomic variables in Veracruz, Mexico.Methodology/Principal FindingsEcological niche modeling (ENM) was used to estimate potential geographic and ecological distributions of nine viper species' in Veracruz. We calculated the distance to the species' niche centroid (DNC); this distance may be associated with a prediction of abundance. We found significant inverse relationships between snakebites and DNCs of common vipers (Crotalus simus and Bothrops asper), explaining respectively 15% and almost 35% of variation in snakebite incidence. Additionally, DNCs for these two vipers, in combination with marginalization of human populations, accounted for 76% of variation in incidence.Conclusions/SignificanceOur results suggest that niche modeling and niche-centroid distance approaches can be used to mapping distributions of environmental suitability for venomous snakes; combining this ecological information with socioeconomic factors may help with inferring potential risk areas for snakebites, since hospital data are often biased (especially when incidences are low).
Payment for hydrological services (PHS) are popular tools for conserving ecosystems and their water-related services. However, improving the spatial targeting and impacts of PHS, as well as their ability to foster synergies with other ecosystem services (ES), remain challenging. We aimed at using spatial analyses to evaluate the targeting performance of México’s National PHS program in central Veracruz. We quantified the effectiveness of areas targeted for PHS in actually covering areas of high HS provision and social priority during 2003–2013. First, we quantified provisioning and spatial distributions of two target (water yield and soil retention), and one non-target ES (carbon storage) using InVEST. Subsequently, pairwise relationships among ES were quantified by using spatial correlation and overlap analyses. Finally, we evaluated targeting by: (i) prioritizing areas of individual and overlapping ES; (ii) quantifying spatial co-occurrences of these priority areas with those targeted by PHS; (iii) evaluating the extent to which PHS directly contribute to HS delivery; and (iv), testing if PHS targeted areas disproportionately covered areas with high ecological and social priority. We found that modelled priority areas exhibited non-random distributions and distinct spatial patterns. Our results show significant pairwise correlations between all ES suggesting synergistic relationships. However, our analysis showed a significantly lower overlap than expected and thus significant mismatches between PHS targeted areas and all types of priority areas. These findings suggest that the targeting of areas with high HS provisioning and social priority by Mexico’s PHS program could be improved significantly. This study underscores: (1) the importance of using maps of HS provisioning as main targeting criteria in PHS design to channel payments towards areas that require future conservation, and (2) the need for future research that helps balance ecological and socioeconomic targeting criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.