The pig is one of the main reservoirs of Yersinia enterocolitica strains pathogenic to humans. A description of the Y. enterocolitica population in this reservoir, and accurate discriminatory techniques for typing isolates are needed for prevention, outbreak investigation, and surveillance. This study investigates the genetic diversity of pathogenic Y. enterocolitica isolates obtained from pig tonsils in a French pig slaughterhouse in 2009 (S1) and 2010 (S2). The use of Pulsed‐Field Gel Electrophoresis (PFGE) and MLVA as typing techniques was also compared and evaluated. First, a total of 167 isolates (12 of biotype 3 recovered during S1, and 155 of biotype 4 recovered during S1 and S2) were typed by PFGE using the XbaI enzyme. MLVA was then tested on all the biotype 3 isolates in addition to 70 selected biotype 4 isolates recovered over the 2 years. PFGE generated two specific XbaI‐PFGE profiles for biotype 3 isolates. Nine XbaI profiles were obtained for biotype 4, with a higher diversity (ID = 0.599) than biotype 3 (ID = 0.167). Two out of the nine XbaI profiles were reported during both surveys and at different months. MLVA improved the differentiation between isolates; the index of diversity reached 0.621 and 0.958, respectively, for biotype 3 (three MLVA types) and biotype 4 (32 MLVA types). The MLVA types for biotype 4 differed over the two surveys, but some isolates with different MLVA types were genetically closely related. This study provides an initial evaluation of the genetic diversity of Y. enterocolitica strains isolated from pigs in France. We show that some PFGE profiles are maintained in the pig production sector, and, through MLVA, that part of the Y. enterocolitica population remained genetically close over the two years. MLVA proved its effectiveness as a tool for investigating pathogenic Y. enterocolitica strains isolated from pigs.
Fimbriae play an important role in adhesion and are therefore essential for the interaction of bacteria with the environments they encounter. Most of them are expressed in vivo but not in vitro, thus making difficult the full characterization of these fimbriae. Here, we characterized the silencing of plasmid-encoded fimbriae (Pef) expression, encoded by the pef operon, in the worldwide pathogen Salmonella Typhimurium. We demonstrated that the nucleoid-associated proteins H-NS and Hha, and their respective paralogs StpA and YdgT, negatively regulate at pH 5.1 and pH 7.1 the transcription of the pef operon. Two promoters, PpefB and PpefA, direct the transcription of this operon. All the nucleoid-associated proteins silence the PpefB promoter and H-NS also targets the PpefA promoter. While Hha and YdgT are mainly considered as acting primarily through H-NS to modulate gene transcription, our results strongly suggest that Hha and YdgT silence pef transcription at acidic pH either by interacting with StpA or independently of H-NS and StpA. We also confirmed the previously described post-transcriptional repression of Pef fimbriae by CsrA titration via the fim mRNA and CsrB and CsrC sRNA. Finally, among all these regulators, H-NS clearly appeared as the major repressor of Pef expression. These results open new avenues of research to better characterize the regulation of these bacterial adhesive proteins and to clarify their role in the virulence of pathogens.
Previous results in Sprague-Dawley rats indicate that acetone (A), methyl ethyl ketone (MEK), and methyl isobutyl ketone (MiBK) pretreatment (3 d, po) at dosages of 6.8 and 13.6 mmol/kg potentiate CCl4 hepatotoxicity and CHCl3 nephrotoxicity, respectively. The potentiation potency profile observed was MiBK > A > MEK for liver and A > MEK > or = MiBK for kidney toxicity (Raymond & Plaa, 1995). In the present study, hepatic and renal microsomes from A-, MEK-, and MiBK-pretreated rats (6.8 or 13.6 mmol/kg) were examined for cytochrome P-450 content, substrate-specific monooxygenase activity (aminopyrine and benzphetamine N-demethylase, aniline hydroxylase) and in vitro covalent binding of 14CHCl3 and 14CCl4. Of the three ketones, only MiBK significantly increased P-450 content of liver and renal cortical microsomes. Similarly, 14CCl4 covalent binding under aerobic and anaerobic conditions was significantly increased by MiBK pretreatment only. 14CHCl3 covalent binding by renal cortical microsomes was significantly increased only under aerobic conditions by MiBK pretreatment. MiBK (13.6 mmol/kg) increased (threefold) aminopyrine N-demethylation in both liver and kidney, but only benzphetamine N-demethylation (two-fold, at 6.8 and 13.6 mmol/kg) in liver; A and MEK had no effect on either monooxygenase. All ketones at dosages of 6.8 and 13.6 mmol/kg increased aniline hydroxylation in liver (two-fold) and kidney (fivefold). Comparable profiles for P-450 induction, haloalkane covalent binding, and aminopyrine or benzphetamine N-demethylase activity were observed in liver and kidney microsomes. This profile was consistent with the ketone potentiation potency ranking profile observed in vivo for liver but not kidney injury. These findings affirm the importance of ketone-enhanced bioactivation for potentiation of CCl4 hepatotoxicity but suggest an alternative mechanism for CHCl3 nephrotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.