Ecosystem engineers are species that affect others through the provision of habitat rather than consumptive resources. The extent to which ecosystem engineers can indirectly affect entire food webs, however, is poorly understood. Epiphytic tank bromeliads (Bromeliaceae) are ecosystem engineers that are common throughout the Neotropics, and are associated with a variety of predatory arthropods. Here, we examine if bromeliads, by increasing predator densities, indirectly benefit their support tree through reduction in herbivorous insects and leaf damage. We observed and manipulated bromeliad densities in Costa Rican orange orchards, and measured impacts on leaf damage and arboreal and bromeliad invertebrate communities in two different seasons. Our results show that bromeliads are associated with predatory and herbivorous invertebrates but not leaf damage. Bromeliads were correlated with increased densities of their associated predators, especially ants and hunting spiders, but we could not confirm a causal link. Associations with bromeliads changed over time, with seasonal shifts interfering with responses to our manipulations. Bromeliads had a reduced association with predators in the dry season. Moreover, a null association between bromeliads and herbivorous invertebrates in the dry season unexpectedly became positive in the wet season. In summary, we have only limited evidence that bromeliads indirectly promote the top‐down control of arboreal herbivores; instead, our manipulations suggest that bromeliads increase herbivore densities in the wet season. This research suggests that although bromeliads may act as ecosystem engineers, indirectly influencing the invertebrate food web on support trees, their effects are trophically complex and seasonally dependent. Abstract in Spanish is available with online material.
Current climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient. We then probed the impact of short‐ versus long‐term climatic impacts on roll use, by comparing the relative impact of conditions during the experiment versus average, baseline conditions at the site. Leaf shelters supported larger organisms and higher arthropod biomass and species diversity than non‐rolled control leaves. However, the magnitude of the leaf rolls’ effect differed between long‐ and short‐term climate conditions, metrics (species richness, biomass, and body size), and trophic groups (predators vs. herbivores). The effect of leaf rolls on predator richness was influenced only by baseline climate, increasing in magnitude in regions experiencing increased long‐term aridity, regardless of latitude, elevation, and weather during the experiment. This suggests that shelter use by predators may be innate, and thus, driven by natural selection. In contrast, the effect of leaf rolls on predator biomass and predator body size decreased with increasing temperature, and increased with increasing precipitation, respectively, during the experiment. The magnitude of shelter usage by herbivores increased with the abundance of predators and decreased with increasing temperature during the experiment. Taken together, these results highlight that leaf roll use may have both proximal and ultimate causes. Projected increases in climate variability and aridity are, therefore, likely to increase the importance of biotic refugia in mitigating the effects of climate change on species persistence.
This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.