Community ecology aims to understand what factors determine the assembly and dynamics of species assemblages at different spatiotemporal scales. To facilitate the integration between conceptual and statistical approaches in community ecology, we propose Hierarchical Modelling of Species Communities (HMSC) as a general, flexible framework for modern analysis of community data. While non-manipulative data allow for only correlative and not causal inference, this framework facilitates the formulation of data-driven hypotheses regarding the processes that structure communities. We model environmental filtering by variation and covariation in the responses of individual species to the characteristics of their environment, with potential contingencies on species traits and phylogenetic relationships. We capture biotic assembly rules by species-to-species association matrices, which may be estimated at multiple spatial or temporal scales. We operationalise the HMSC framework as a hierarchical Bayesian joint species distribution model, and implement it as R-and Matlab-packages which enable computationally efficient analyses of large data sets. Armed with this tool, community ecologists can make sense of many types of data, including spatially explicit data and time-series data. We illustrate the use of this framework through a series of diverse ecological examples.
The extent to which behavioural choices reflect fine-tuned evolutionary adaptation remains an open debate. For herbivorous insects, the preference-performance hypothesis (PPH) states that female insects will evolve to oviposit on hosts on which their offspring fare best. In this study, we use meta-analysis to assess the balance of evidence for and against the PPH, and to evaluate the role of individual factors proposed to influence host selection by female insects. We do so in an explicitly bitrophic context (herbivores versus plants). Overall, our analyses offer clear support for the PPH: Offspring survive better on preferred plant types, and females lay more eggs on plant types conducive to offspring performance. We also found evidence for an effect of diet breadth on host choice: female preference for Ôgood quality plantsÕ was stronger in oligophagous insects than in polyphagous insects. Nonetheless, despite the large numbers of preference-performance studies conducted to date, sample sizes in our meta-analysis are low due to the inconsistent format used by authors to present their results. To improve the situation, we invite authors to contribute to the data base emerging from this work, with the aim of reaching a strengthened synthesis of the subject field.
Biotic interactions underlie ecosystem structure and function, but predicting interaction outcomes is difficult. We tested the hypothesis that biotic interaction strength increases toward the equator, using a global experiment with model caterpillars to measure predation risk. Across an 11,660-kilometer latitudinal gradient spanning six continents, we found increasing predation toward the equator, with a parallel pattern of increasing predation toward lower elevations. Patterns across both latitude and elevation were driven by arthropod predators, with no systematic trend in attack rates by birds or mammals. These matching gradients at global and regional scales suggest consistent drivers of biotic interaction strength, a finding that needs to be integrated into general theories of herbivory, community organization, and life-history evolution.
Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic breadth of arthropod taxa from the soil to the forest canopy in the San Lorenzo forest, Panama. We collected 6144 arthropod species from 0.48 hectare and extrapolated total species richness to larger areas on the basis of competing models. The whole 6000-hectare forest reserve most likely sustains 25,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates of arthropod biodiversity developed from plant models.M ost eukaryote species are terrestrial arthropods (1), and most terrestrial arthropods occur in tropical rainforests (2). However, considerably greater sampling effort is required in tropical arthropod surveys to yield realistic estimates of global species richness (3-7). A basic hindrance to estimating global biodiversity lies in a lack of empirical data that establish local biodiversity, which can be scaled up to achieve a global estimate.Although many studies reported species richness for selected groups of well-studied insect taxa, no satisfactory estimate of total arthropod species richness exists for a single tropical rainforest location to date.The unstructured collection and small-scale survey of tropical arthropods cannot yield convincing estimates of total species richness at a specific forest (7-9). Most studies either target few arthropod orders or trophic guilds, or use a limited array of sampling methods, or ignore the diverse upper canopy regions of tropical forests (10-15). Moreover, sampling protocols have rarely been structured in such a way that, with increased sampling, incomplete data on local diversity (7) can be extrapolated to estimate total species richness across multiple spatial scales (16). Where such structured estimates are made, it is invariably for insect herbivores on their host plants (5). However, species accumulation rates may differ markedly for nonherbivore guilds, which include more than half of all described arthropod species (1, 17). As the degree of host specificity (effective specialization) of other guilds can be much lower than that of insect herbivores, or may be driven by different factors (18,19), global estimates based on herbivores alone are questionable. Consequently, extensive cross-taxon surveys with structured protocols at reference sites may be the only effective approach toward estimating total arthropod species richness in tropical forests (3).To provide a comprehensive estimate of total arthropod species richness in a tropical rainforest, we established a collaboration involving 102 researchers with expertise encom...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.