We show that high efficiency stimulated Raman scattering can be obtained using hollow core photonic crystal fiber with the core filled with a low refractive index nonlinear liquid. This new architecture opens new perspectives in the development of nonlinear functions as any kind of nonlinear liquid media can now be used to implement them, with original properties not accessible with silica core fibers.
It is now commonly accepted that, in large pitch hollow-core 'kagomé' lattice fibers, the loss spectrum is related to resonances of the thin silica webs in the photonic crystal cladding. Moreover, coherent scattering from successive holes' layers cannot be obtained and adding holes' layers does not decrease the loss level. In this communication, cross-comparison of experimental data and accurate numerical modeling is presented that helps demonstrate that waveguiding in large pitch hollow-core fibers arises from the antiresonance of the core surround only and does not originate from the photonic crystal cladding. The glass webs only mechanically support the core surround and are sources of extra leakage. Large pitch hollow-core fibers exhibit features of thin walled and thick walled tubular waveguides, the first one tailoring the transmission spectrum while the second one is responsible for the increased loss figure. As a consequence, an approximate calculus, based on specific features of both types of waveguides, gives the loss spectrum, in very good agreement with experimental data. Finally, a minimalist hollow-core microstructured fiber, the cladding of which consists of six thin bridges suspending the core surround, is proposed for the first time.
International audienceA silica Bragg fibre with optical losses lower than 10 dB km-1 is fabricated for the first time. The Bragg fibre manufactured by the MCVD method is intended for operation at a wavelength of 1.06 μm and has the mode-spot diameter 18.5 μm (the mode-spot area is 270 μm2). The fibre is considerably less sensitive to bending than step-index fibres and microstructure fibres with the same mode-spot size. The possibility of fabricating a Bragg fibre with the record mode-spot area (530 μm2 at the operating wavelength of 855 nm) for all-silica fibres is demonstrated
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.