We report on the emission of hybrid nanosources composed of gold nanoparticles coupled with quantum dots. The emission relies on energy transfer from the quantum dots to gold nanoparticles which could be de-excited through radiative plasmon relaxation. The dependence of the emission efficiency is studied systematically as a function of the size of gold nanoparticles and interdistance between gold nanoparticles and quantum dots. We demonstrate a size-dependent transition between quenching and enhancement and a nonradiative energy transfer from the quantum dots to the gold nanoparticles.
Optical properties of novel micrometer-size Ga and GaN three-dimensional structures obtained by the metal-organic chemical vapour deposition (MOCVD) technique are presented in this letter. These structures are obtained as metallic three dimensions (3D) micrometer-size objects on an appropriate substrate by metalorganic (TMGa) pyrolisis and then GaN transformed on annealing under NH3 atmosphere at 650–750°C. These 3D GaN structures are analysed by optical means, using two-photon excitation (800 nm) and by UV Hg lamp fluorescent spectroscopy techniques, adapted to two-optical-microscopes apparatus. Very intense and blue/yellow light emission is observed from these 3D structures under 800 nm two-photon laser excitation and under UV Hg lamp excitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.