Cell cycle regulators, such as the CDC25 phosphatases, are potential targets for the development of new anticancer drugs. Here we report the identification and the characterization of BN82685, a quinone-based CDC25 inhibitor that is active in vitro and in vivo. BN82685 inhibits recombinant CDC25A, B, and C phosphatases in vitro. It inhibits the growth of human tumor cell lines with an IC 50 in the submicromolar range, independently of their resistance to chemotherapeutic agents. This inhibitory effect is irreversible on both the purified CDC25 enzyme in vitro and on tumor cell proliferation. The specificity of BN82685 towards the CDC25 phosphatases is shown by an increase in cyclin-dependent kinase 1 tyrosine 15 phosphorylation, by the reversion of the mitosis-inducing effect of CDC25B overexpression in HeLa cells, and by the lack of a growth inhibitory effect in an assay based on the use of a CDC25-independent fission yeast model. Finally, when administered p.o.,
Statins are lipid-lowering drugs that may help limit cancer occurrence in humans. They drive blockage of the mevalonate pathway, trigger cancer cell apoptosis in vitro and reduce tumour incidence in animals. We have shown in the present study that statins induced apoptosis in HGT-1 human gastric cancer cells, and this was prevented by intermediates of the cholesterol synthetic pathway. In addition, similarly to what we have reported previously for caspase 2 [Logette, Le Jossic-Corcos, Masson, Solier, Sequeira-Legrand, Dugail, Lemaire-Ewing, Desoche, Solary and Corcos (2005) Mol. Cell. Biol. 25, 9621-9631], caspase 7 may also be induced by statins and is under the positive control of SREBP (sterol-regulatory-element-binding protein)-1 and -2, major activators of cholesterol and fatty acid synthesis genes, in HGT-1 cells. Knocking down these proteins strongly reduced caspase 7 mRNA and protein expression, and chromatin immunoprecipitation analyses showed that the proximal promoter region of the CASP7 gene could bind either SREBP-1 or -2. Strikingly, cells selected to grow in the continuous presence of statins showed increased expression of caspase 7 mRNA and protein, which was maintained in the absence of statins for several weeks, suggesting that high expression of this caspase might participate in adaptation to blunting of the mevalonate pathway in this model. Taken together, our results show that caspase 7, as an SREBP-1/2 target, can be induced under mevalonate-restricting conditions, which might help overcome its shortage.
The processes of making transgenic animals by microinjecting DNA into the pronucleus of a fertilized oocyte or after the transfection of embryonic stem cells are now well established. However, attempts have also been made, with varying degrees of success, to use spermatozoa as a vector for transgenesis in mammals and other vertebrates during the last decade. A number of different approaches for making transgenic spermatozoa have been developed. These include directly incubating mature, isolated spermatozoa with DNA or pretreating mature, isolated spermatozoa before assisted fertilization. Microinjection procedures have also been established to transfect male germ cells directly in vivo within the seminiferous tubules or to reimplant previously isolated male germ cells submitted to in vitro transfection into a recipient testis. The latter two techniques present the advantage of being able to create transgenic progeny simply by mating with wild-type females, which avoids the possibility of interference or damage as a result of assisted fertilization or the manipulation of embryos. The different aspects of sperm-mediated transgenesis are presented.
Human aromatase is responsible for estrogen biosynthesis and is implicated, in particular, in reproduction and estrogen-dependent tumor proliferation. The molecular structure model is largely derived from the X-ray structure of bacterial cytochromes sharing only 15-20% identities with hP-450arom. In the present study, site directed mutagenesis experiments were performed to examine the role of K119, C124, I125, K130, E302, F320, D309, H475, D476, S470, I471 and I474 of aromatase in catalysis and for substrate binding. The catalytic properties of mutants, transfected in 293 cells, were evaluated using androstenedione, testosterone or nor-testosterone as substrates. In addition, inhibition profiles for these mutants with indane or indolizinone derivatives were obtained. Our results, together with computer modeling, show that catalytic properties of mutants vary in accordance with the substrate used, suggesting possible differences in substrates positioning within the active site. In this respect, importance of residues H475, D476 and K130 was discussed. These results allow us to hypothesize that E302 could be involved in the aromatization mechanism with nor-androgens, whereas D309 remains involved in androgen aromatization. This study highlights the flexibility of the substrate-enzyme complex conformation, and thus sheds new light on residues that may be responsible for substrate specificity between species or aromatase isoforms.Keywords: aromatase; site-directed mutagenesis; molecular modeling; androgens; inhibitors.Estrogens are known to be implicated in reproduction and estrogen-dependent tumor proliferation [1]. Moreover, an abnormal expression of aromatase, the enzyme involved in the conversion of androgens to estrogens, has been detected in breast tumors and in surrounding adipose stromal cells [2,3]. The aromatase enzyme comprises a specific cytochrome P-450 aromatase and the ubiquitous cytochrome P-450 NADPH reductase. A common treatment for estrogen-dependent cancers is the use of antiestrogens and/or aromatase inhibitors [4]. The usual way to develop new aromatase inhibitors is to screen in vitro chemical compounds [5][6][7][8][9][10] from the knowledge of the substrate structure, or by comparisons with other aromatases [11][12][13]. The design of more specific and efficient aromatase inhibitors could be improved by a better knowledge of the enzyme's active site. A precise modeling of this part of the molecule is therefore necessary. Despite success in obtaining aromatase purified to homogeneity [14], crystallization of this microsomal membrane-anchored protein has not been reported. Knowledge of the aromatase structure is largely derived from comparisons with soluble bacterial cytochromes Pseudomons putida camphor P-450 (P-450cam), Bacillus megaterium P-450 (P-450BM-3), Pseudomonas putida a-terpineol P-450 (P-450terp) and Saccharopolyspora erythreae erythromycin F P-450 (P-450eryF), these proteins being well characterized and crystallized [15][16][17][18][19]. However, human aromatase shares only 15-20% ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.