The motor cortex controls skilled arm movement by recruiting a variety of targets in the nervous system, and it is important to understand the emergent activity in these regions as refinement of a motor skill occurs. One fundamental projection of the motor cortex (M1) is to the cerebellum. However, the emergent activity in the motor cortex and the cerebellum that appears as a dexterous motor skill is consolidated is incompletely understood. Here, we report on low-frequency oscillatory (LFO) activity that emerges in cortico-cerebellar networks with learning the reach-to-grasp motor skill. We chronically recorded the motor and the cerebellar cortices in rats which revealed the emergence of coordinated movement-related activity in the local-field potentials (LFPs) as the reaching skill consolidated. Interestingly, we found this emergent activity only in the rats that gained expertise in the task. We found that the local and cross-area spiking activity was coordinated with LFOs in proficient rats. Finally, we also found that these neural dynamics were more prominently expressed during accurate behavior in the M1. This work furthers our understanding on emergent dynamics in the cortico-cerebellar loop that underlie learning and execution of precise skilled movement.Significance StatementMovement execution involves parallel processing across brain regions, with the motor cortex (M1) being a key hub that recruits several subcortical nodes. The cerebellar cortex is a principal receiver of M1 projections via pons, but the emergent dynamics in these regions with motor skill learning is incompletely understood. We performed simultaneous recordings of M1 and cerebellum in a reach-to-grasp task. We found low frequency activity and coordinated neural dynamics emerged within and across regions with skillful task execution. Recent interest in modulating cortico-cerebellar networks for motor-recovery post-injury/stroke make this work an important precursor to assessing whether similar low-frequency activity in cortico-cerebellar networks can serve as a biomarker of motor recovery and help optimize modulation of these networks.
The motor cortex controls skilled arm movement by recruiting a variety of targets in the nervous system, and it is important to understand the emergent activity in these regions as refinement of a motor skill occurs. One fundamental projection of the motor cortex is to the cerebellum. However, the emergent activity in the motor cortex and the cerebellum that appears as a dexterous motor skill is consolidated is incompletely understood. Here, we report on low-frequency oscillatory (LFO) activity that emerges in cortico-cerebellar networks with learning the reach-to-grasp motor skill. We chronically recorded the motor and the cerebellar cortices in rats which revealed the emergence of coordinated movement-related activity in the local-field potentials (LFPs) as the reaching skill consolidated. We found that the local and cross-area spiking activity was coordinated with LFOs. Finally, we also found that these neural dynamics were more prominently expressed during accurate behavior. This work furthers our understanding on emergent dynamics in the cortico-cerebellar loop that underlie learning and execution of precise skilled movement.
Gestalt psychologists pointed out about 100 years ago that a key to solving difficult insight problems is to change the mental representation of the problem, as is the case, for example, with solving the six matches problem in 2D vs. 3D space. In this study we ask a different question, namely what representation is used when subjects solve search, rather than insight problems. Some search problems, such as the traveling salesman problem (TSP), are defined in the Euclidean plane on the computer monitor or on a piece of paper, and it seems natural to assume that subjects who solve a Euclidean TSP do so using a Euclidean representation. It is natural to make this assumption because the TSP task is defined in that space. We provide evidence that, on the contrary, subjects may produce TSP tours in the complex-log representation of the TSP city map. The complex-log map is a reasonable assumption here, because there is evidence suggesting that the retinal image is represented in the primary visual cortex as a complex-log transformation of the retina. It follows that the subject's brain may be "solving" the TSP using complex-log maps. We conclude by pointing out that solving a Euclidean problem in a complex-log representation may be acceptable, even desirable, if the subject is looking for near-optimal, rather than optimal solutions.
The study of rhythms and oscillations in the brain is gaining attention. While it is unclear exactly what the role of oscillation, synchrony, and rhythm is, it appears increasingly likely that synchrony is related to normal and abnormal brain states and possibly cognition. In this article, we explore the relationship between basal ganglia (BG) synchrony and reinforcement learning. We simulate a biologically-realistic model of the striatum initially proposed by Ponzi and Wickens (2010) and enhance the model by adding plastic cortico-BG synapses that can be modified using reinforcement learning. The effect of reinforcement learning on striatal rhythmic activity is then explored, and disrupted using simulated deep brain stimulation (DBS). The stimulator injects current in the brain structure to which it is attached, which affects neuronal synchrony. The results show that training the model without DBS yields a high accuracy in the learning task and reduced the number of active neurons in the striatum, along with an increased firing periodicity and a decreased firing synchrony between neurons in the same assembly. In addition, a spectral decomposition shows a stronger signal for correct trials than incorrect trials in high frequency bands. If the DBS is ON during the training phase, but not the test phase, the amount of learning in the model is reduced, along with firing periodicity. Similar to when the DBS is OFF, spectral decomposition shows a stronger signal for correct trials than for incorrect trials in high frequency domains, but this phenoemenon happens in higher frequency bands than when the DBS is OFF. Synchrony between the neurons is not affected. Finally, the results show that turning the DBS ON at test increases both firing periodicity and striatal synchrony, and spectral decomposition of the signal show that neural activity synchronizes with the DBS fundamental frequency (and its harmonics). Turning the DBS ON during the test phase results in chance performance regardless of whether the DBS was ON or OFF during training. We conclude that reinforcement learning is related to firing periodicity, and a stronger signal for correct trials when compared to incorrect trials in high frequency bands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.