Arthrobacter sp. strain G1 is able to grow on 4-fluorocinnamic acid (4-FCA) as sole carbon source. The organism converts 4-FCA into 4-fluorobenzoic acid (4-FBA) and utilizes the two-carbon side-chain for growth with some formation of 4-fluoroacetophenone as a dead-end side product. We also have isolated Ralstonia sp. strain H1, an organism that degrades 4-FBA. A consortium of strains G1 and H1 degraded 4-FCA with Monod kinetics during growth in batch and continuous cultures. Specific growth rates of strain G1 and specific degradation rates of 4-FCA were observed to follow substrate inhibition kinetics, which could be modeled using the kinetic models of Haldane–Andrew and Luong–Levenspiel. The mixed culture showed complete mineralization of 4-FCA with quantitative release of fluoride, both in batch and continuous cultures. Steady-state chemostat cultures that were exposed to shock loadings of substrate responded with rapid degradation and returned to steady-state in 10–15 h, indicating that the mixed culture provided a robust system for continuous 4-FCA degradation.
The conversion of and toxic effects exerted by several mono- and dihalogenated C1 and C2 compounds on cultures of Xanthobacter autotrophicus GJ10 growing on 1,2-dichloroethane were investigated. Bromochloromethane, dibromomethane and 1-bromo-2-chloroethane were utilized by strain GJ10 in batch culture as a cosubstrate and sole carbon source. The rate of degradation of dihalomethanes by whole cells was lower than that of 1,2-dichloroethane, but a significant increase of the rate of dihalomethane biodegradation was observed when methanol or ethanol were added as a cosubstrate. Products of the degradation of several tested compounds by haloalkane dehalogenase were analyzed and a new metabolic pathway based on hydrolytic conversion to formaldehyde was proposed for the dihalomethanes. Strain GJ10 growing on 1,2-dichloroethane converted 2-fluoroethanol and 1-chloro-2-fluoroethane to 2-fluoroacetate, which was tolerated up to a concentration of 2.5 mM. On the basis of the results from batch cultures an inert (dichloromethane), a growth-supporting (dibromomethane) and a toxic (1,2-dibromoethane) compound were selected for testing their effects on a continuous culture of strain GJ10 growing on 1,2-dichloroethane. The compounds were added as pulses to a steady-state chemostat and the response of the culture was followed. The effects varied from a temporary decrease in cell density for dibromomethane to severe toxicity and culture washout with 1,2-dibromoethane. Our results extend the spectrum of halogenated C1 and C2 compounds that are known to be degraded by strain GJ10 and provide information on toxic effects and transformation of compounds not serving as a carbon source for this bacterium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.