The stromal compartment of the tumor microenvironment consists of a heterogeneous set of tissue-resident and tumor-infiltrating cells, which are profoundly moulded by cancer cells. An outstanding question is to what extent this heterogeneity is similar between cancers affecting different organs. Here, we profile 233,591 single cells from patients with lung, colorectal, ovary and breast cancer ( n = 36) and construct a pan-cancer blueprint of stromal cell heterogeneity using different single-cell RNA and protein-based technologies. We identify 68 stromal cell populations, of which 46 are shared between cancer types and 22 are unique. We also characterise each population phenotypically by highlighting its marker genes, transcription factors, metabolic activities and tissue-specific expression differences. Resident cell types are characterised by substantial tissue specificity, while tumor-infiltrating cell types are largely shared across cancer types. Finally, by applying the blueprint to melanoma tumors treated with checkpoint immunotherapy and identifying a naïve CD4 + T-cell phenotype predictive of response to checkpoint immunotherapy, we illustrate how it can serve as a guide to interpret scRNA-seq data. In conclusion, by providing a comprehensive blueprint through an interactive web server, we generate the first panoramic view on the shared complexity of stromal cells in different cancers.
Current metabarcoding studies aiming to characterize microbial communities generally rely on the amplification and sequencing of relatively short DNA regions. For fungi, the internal transcribed spacer (ITS) region in the ribosomal RNA (rRNA) operon has been accepted as the formal fungal barcode. Despite an increasing number of fungal metabarcoding studies, the amplification efficiency of primers is generally not tested prior to their application in metabarcoding studies. Some of the challenges that metabarcoding primers should overcome efficiently are the amplification of target DNA strands in samples rich in non-target DNA and environmental pollutants, such as humic acids, that may have been co-extracted with DNA. In the current study, three selected primer pairs were tested for their suitability as fungal metabarcoding primers. The selected primer pairs include two primer pairs that have been frequently used in fungal metabarcoding studies (ITS1F/ITS2 and ITS3/ITS4) and a primer pair (ITS86F/ITS4) that has been shown to efficiently amplify the ITS2 region of a broad range of fungal taxa in environmental soil samples. The selected primer pairs were evaluated in a 454 amplicon pyrosequencing experiment, real-time PCR (qPCR) experiments and in silico analyses. Results indicate that experimental evaluation of primers provides valuable information that could aid in the selection of suitable primers for fungal metabarcoding studies. Furthermore, we show that the ITS86F/ITS4 primer pair outperforms other primer pairs tested in terms of in silico primer efficiency, PCR efficiency, coverage, number of reads and number of species-level operational taxonomic units (OTUs) obtained. These traits push the ITS86F/ITS4 primer pair forward as highly suitable for studying fungal diversity and community structures using DNA metabarcoding.
Although the number of studies investigating mycorrhizal associations in orchids has increased in recent years, the fungal communities associating with orchids and how they differ between species and sites remain unclear. Recent research has indicated that individual orchid plants may associate with several fungi concurrently, implying that to study mycorrhizal associations in orchids the fungal community should be assessed, rather than the presence of individual dominant fungal species or strains. High-throughput sequencing methods, such as 454 pyrosequencing, are increasingly used as the primary tool for such analyses. However, many studies combine universal primers from previous phylogenetic or ecological studies to generate amplicons suitable for 454 pyrosequencing without first critically evaluating their performance, potentially resulting in biased fungal community descriptions. Here, following in silico primer analysis we evaluated the performance of different combinations of existing PCR primers to characterize orchid mycorrhizal communities using 454 pyrosequencing by analysis of both an artificially assembled community of mycorrhizal fungi isolated from diverse orchid species and root samples from three different orchid species (Anacamptis morio, Ophrys tenthredinifera and Serapias lingua). Our results indicate that primer pairs ITS3/ITS4OF and ITS86F/ITS4, targeting the internal transcribed spacer-2 (ITS-2) region, outperformed other tested primer pairs in terms of number of reads, number of operational taxonomic units recovered from the artificial community and number of different orchid mycorrhizal associating families detected in the orchid samples. Additionally, we show the complementary specificity of both primer pairs, making them highly suitable for tandem use when studying the diversity of orchid mycorrhizal communities.
SummaryMultispecies assemblages often consist of a complex network of interactions. Describing the architecture of these networks is a first step in understanding the stability and persistence of these species-rich communities. Whereas a large body of research has been devoted to the description of above-ground interactions, much less attention has been paid to below-ground interactions, probably because of difficulties to adequately assess the nature and diversity of interactions occurring below the ground.In this study, we used 454 amplicon pyrosequencing to investigate the architecture of the network between mycorrhizal fungi and 20 orchid species co-occurring in a species-rich Mediterranean grasslands.We found 100 different fungal operational taxonomic units (OTUs) known to be mycorrhizal in orchids, most of which were members related to the genera Ceratobasidium and Tulasnella. The network of interactions was significantly compartmentalized (M = 0.589, P = 0.001), but not significantly nested (N = 0.74, NODF = 10.58; P > 0.05). Relative nestedness was negative (N* = À0.014), also suggesting the existence of isolated groups of interacting species.Compartmentalization is a typical feature of ecological systems showing high interaction intimacy, and may reflect strong specialization between orchids and fungi resulting from physiological, physical or spatial constraints.
e Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.