Using the regional climate model ALARO-0, the Royal Meteorological Institute of Belgium and Ghent University have performed two simulations of the past observed climate within the framework of the Coordinated Regional Climate Downscaling Experiment (CORDEX). The ERA-Interim reanalysis was used to drive the model for the period 1979-2010 on the EURO-CORDEX domain with two horizontal resolutions, 0.11 and 0.44 •. ALARO-0 is char-acterised by the new microphysics scheme 3MT, which allows for a better representation of convective precipitation. In Kotlarski et al. (2014) several metrics assessing the performance in representing seasonal mean near-surface air temperature and precipitation are defined and the corresponding scores are calculated for an ensemble of models for different regions and seasons for the period 1989-2008. Of special interest within this ensemble is the ARPEGE model by the Centre National de Recherches Météorologiques (CNRM), which shares a large amount of core code with ALARO-0. Results show that ALARO-0 is capable of representing the European climate in an acceptable way as most of the ALARO-0 scores lie within the existing ensemble. However, for near-surface air temperature, some large biases, which are often also found in the ARPEGE results, persist. For precipitation , on the other hand, the ALARO-0 model produces some of the best scores within the ensemble and no clear resemblance to ARPEGE is found, which is attributed to the inclusion of 3MT. Additionally, a jackknife procedure is applied to the ALARO-0 results in order to test whether the scores are robust , meaning independent of the period used to calculate them. Periods of 20 years are sampled from the 32-year simulation and used to construct the 95 % confidence interval for each score. For most scores, these intervals are very small compared to the total ensemble spread, implying that model differences in the scores are significant.
This study reports on the exploitation of GNSS (Global Navigation Satellite System) and a new potential application for weather forecasts and nowcasting. We focus on GPS observations (post-processing with a time resolution of 5 and 15 min and fast calculations with a time resolution of 5 min) and try to establish typical configurations of the water vapour field which characterise convective systems and particularly which supply precursors of their initiation are associated with deep convection. We show the critical role of GNSS horizontal gradients of the water vapour content to detect small scale structures of the troposphere (i. e. convective cells), and then we present our strategy to obtain typical water vapour configurations by GNSS called "H2O alert". These alerts are based on a dry/wet contrast taking place during a 30 min time window before the initiation of a convective system. GNSS observations have been assessed for the rainfall event of 28–29 June 2005 using data from the Belgian dense network (baseline from 5 to 30 km). To validate our GNSS H2O alerts, we use the detection of precipitation by C-band weather radar and thermal infrared radiance (cloud top temperature) of the 10.8-micrometers channel [Ch09] of SEVIRI instrument on Meteosat Second Generation. Using post-processed measurements, our H2O alerts obtain a score of about 80%. Final and ultra-rapid IGS (International GNSS Service) orbits have been tested and show equivalent results. Fast calculations (less than 10 min) have been processed for 29 June 2005 with a time resolution of 5 min. The mean bias (and standard deviation) between fast and reference post-processed ZTD (zenith total delay) and gradients are, respectively, 0.002 (± 0.008) m and 0.001 (± 0.004) m. The score obtained for the H2O alerts generated by fast calculations is 65%
The authors consider a thunderstorm event in 2011 during a music festival in Belgium that produced a shortlived downburst of a diameter of less than 100 m. This is far too small to be resolved by the kilometric resolutions of today's operational numerical weather prediction models. Operational forecast models will not run at hectometric resolutions in the foreseeable future. The storm caused five casualties and raised strong societal questions regarding the predictability of such a traumatic weather event.In this paper it is investigated whether the downdrafts of a parameterization scheme of deep convection can be used as proxies for the unresolved downbursts. To this end the operational model ALARO [a version of the Action de Recherche Petite Echelle Grande Echelle-Aire Limitée Adaptation Dynamique Développement International (ARPEGE-ALADIN) operational limited area model with a revised and modular structure of the physical parameterizations] of the Royal Meteorological Institute of Belgium is used. While the model in its operational configuration at the time of the event did not give a clear hint of a downburst event, it has been found that (i) the use of unsaturated downdrafts and (ii) some adaptations of the features of this downdraft parameterization scheme, specifically the sensitivity to the entrainment and friction, can make the downdrafts sensitive enough to the surrounding resolved-scale conditions to make them useful as indicators of the possibility of such downbursts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.