Using the regional climate model ALARO-0, the Royal Meteorological Institute of Belgium and Ghent University have performed two simulations of the past observed climate within the framework of the Coordinated Regional Climate Downscaling Experiment (CORDEX). The ERA-Interim reanalysis was used to drive the model for the period 1979-2010 on the EURO-CORDEX domain with two horizontal resolutions, 0.11 and 0.44 •. ALARO-0 is char-acterised by the new microphysics scheme 3MT, which allows for a better representation of convective precipitation. In Kotlarski et al. (2014) several metrics assessing the performance in representing seasonal mean near-surface air temperature and precipitation are defined and the corresponding scores are calculated for an ensemble of models for different regions and seasons for the period 1989-2008. Of special interest within this ensemble is the ARPEGE model by the Centre National de Recherches Météorologiques (CNRM), which shares a large amount of core code with ALARO-0. Results show that ALARO-0 is capable of representing the European climate in an acceptable way as most of the ALARO-0 scores lie within the existing ensemble. However, for near-surface air temperature, some large biases, which are often also found in the ARPEGE results, persist. For precipitation , on the other hand, the ALARO-0 model produces some of the best scores within the ensemble and no clear resemblance to ARPEGE is found, which is attributed to the inclusion of 3MT. Additionally, a jackknife procedure is applied to the ALARO-0 results in order to test whether the scores are robust , meaning independent of the period used to calculate them. Periods of 20 years are sampled from the 32-year simulation and used to construct the 95 % confidence interval for each score. For most scores, these intervals are very small compared to the total ensemble spread, implying that model differences in the scores are significant.
HarmonEPS is the limited-area, short-range, convection-permitting ensemble prediction system developed and maintained by the HIRLAM consortium as part of the shared ALADIN–HIRLAM system. HarmonEPS is the ensemble realization of HARMONIE–AROME, used for operational short-range forecasting in HIRLAM countries. HarmonEPS contains a range of perturbation methodologies to account for uncertainties in the initial conditions, forecast model, surface, and lateral boundary conditions. This paper describes the state of the system at the version labeled cycle 40 and highlights some directions for further development. The different perturbation methods available are evaluated and compared where appropriate. Several institutes have operational or preoperational implementations of HarmonEPS, such as MEPS (Finland, Norway, and Sweden), COMEPS (Denmark), IREPS (Ireland), KEPS (the Netherlands), AEMET-γSREPS (Spain), and RMI-EPS (Belgium), and these systems are briefly described and compared with the ensemble prediction system (IFS ENS) from the European Centre for Medium-Range Weather Forecasts (ECMWF).
The authors consider a thunderstorm event in 2011 during a music festival in Belgium that produced a shortlived downburst of a diameter of less than 100 m. This is far too small to be resolved by the kilometric resolutions of today's operational numerical weather prediction models. Operational forecast models will not run at hectometric resolutions in the foreseeable future. The storm caused five casualties and raised strong societal questions regarding the predictability of such a traumatic weather event.In this paper it is investigated whether the downdrafts of a parameterization scheme of deep convection can be used as proxies for the unresolved downbursts. To this end the operational model ALARO [a version of the Action de Recherche Petite Echelle Grande Echelle-Aire Limitée Adaptation Dynamique Développement International (ARPEGE-ALADIN) operational limited area model with a revised and modular structure of the physical parameterizations] of the Royal Meteorological Institute of Belgium is used. While the model in its operational configuration at the time of the event did not give a clear hint of a downburst event, it has been found that (i) the use of unsaturated downdrafts and (ii) some adaptations of the features of this downdraft parameterization scheme, specifically the sensitivity to the entrainment and friction, can make the downdrafts sensitive enough to the surrounding resolved-scale conditions to make them useful as indicators of the possibility of such downbursts.
Abstract. In the simulation of complex multi-scale flows arising in weather and climate modelling, one of the biggest challenges is to satisfy strict service requirements in terms of time to solution and to satisfy budgetary constraints in terms of energy to solution, without compromising the accuracy and stability of the application. These simulations require algorithms that minimise the energy footprint along with the time required to produce a solution, maintain the physically required level of accuracy, are numerically stable, and are resilient in case of hardware failure. The European Centre for Medium-Range Weather Forecasts (ECMWF) led the ESCAPE (Energy-efficient Scalable Algorithms for Weather Prediction at Exascale) project, funded by Horizon 2020 (H2020) under the FET-HPC (Future and Emerging Technologies in High Performance Computing) initiative. The goal of ESCAPE was to develop a sustainable strategy to evolve weather and climate prediction models to next-generation computing technologies. The project partners incorporate the expertise of leading European regional forecasting consortia, university research, experienced high-performance computing centres, and hardware vendors. This paper presents an overview of the ESCAPE strategy: (i) identify domain-specific key algorithmic motifs in weather prediction and climate models (which we term Weather & Climate Dwarfs), (ii) categorise them in terms of computational and communication patterns while (iii) adapting them to different hardware architectures with alternative programming models, (iv) analyse the challenges in optimising, and (v) find alternative algorithms for the same scheme. The participating weather prediction models are the following: IFS (Integrated Forecasting System); ALARO, a combination of AROME (Application de la Recherche à l'Opérationnel à Meso-Echelle) and ALADIN (Aire Limitée Adaptation Dynamique Développement International); and COSMO–EULAG, a combination of COSMO (Consortium for Small-scale Modeling) and EULAG (Eulerian and semi-Lagrangian fluid solver). For many of the weather and climate dwarfs ESCAPE provides prototype implementations on different hardware architectures (mainly Intel Skylake CPUs, NVIDIA GPUs, Intel Xeon Phi, Optalysys optical processor) with different programming models. The spectral transform dwarf represents a detailed example of the co-design cycle of an ESCAPE dwarf. The dwarf concept has proven to be extremely useful for the rapid prototyping of alternative algorithms and their interaction with hardware; e.g. the use of a domain-specific language (DSL). Manual adaptations have led to substantial accelerations of key algorithms in numerical weather prediction (NWP) but are not a general recipe for the performance portability of complex NWP models. Existing DSLs are found to require further evolution but are promising tools for achieving the latter. Measurements of energy and time to solution suggest that a future focus needs to be on exploiting the simultaneous use of all available resources in hybrid CPU–GPU arrangements.
Abstract. In the simulation of complex multi-scale flow problems, such as those arising in weather and climate modelling, one of the biggest challenges is to satisfy operational requirements in terms of time-to-solution and energy-to-solution yet without compromising the accuracy and stability of the calculation. These competing factors require the development of state-of-the-art algorithms that can optimally exploit the targeted underlying hardware and efficiently deliver the extreme computational capabilities typically required in operational forecast production. These algorithms should (i) minimise the energy footprint along with the time required to produce a solution, (ii) maintain a satisfying level of accuracy, (iii) be numerically stable and resilient, in case of hardware or software failure. The European Centre for Medium Range Weather Forecasts (ECMWF) is leading a project called ESCAPE (Energy-efficient SCalable Algorithms for weather Prediction on Exascale supercomputers) which is funded by Horizon 2020 (H2020) under initiative Future and Emerging Technologies in High Performance Computing (FET-HPC). The goal of the ESCAPE project is to develop a sustainable strategy to evolve weather and climate prediction models to next-generation computing technologies. The project partners incorporate the expertise of leading European regional forecasting consortia, university research, experienced high-performance computing centres and hardware vendors. This paper presents an overview of results obtained in the ESCAPE project in which weather prediction have been broken down into smaller building blocks called dwarfs. The participating weather prediction models are: IFS (Integrated Forecasting System), ALARO – a combination of AROME (Application de la Recherche à l'Opérationnel a Meso-Echelle) and ALADIN (Aire Limitée Adaptation Dynamique Développement International) and COSMO-EULAG – a combination of COSMO (Consortium for Small-scale Modeling) and EULAG (Eulerian/semi-Lagrangian fluid solver). The dwarfs are analysed and optimised in terms of computing performance for different hardware architectures (mainly Intel Skylake CPUs, NVIDIA GPUs, Intel Xeon Phi). The ESCAPE project includes the development of new algorithms that are specifically designed for better energy efficiency and improved portability through domain specific languages. In addition, the modularity of the algorithmic framework, naturally allows testing different existing numerical approaches, and their interplay with the emerging heterogeneous hardware landscape. Throughout the paper, we will compare different numerical techniques to solve the main building blocks that constitute weather models, in terms of energy efficiency and performance, on a variety of computing technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.