A high-resolution dataset of three irregular wave conditions collected on a gently sloping laboratory beach is analyzed to study nonlinear energy transfers involving infragravity frequencies. This study uses bispectral analysis to identify the dominant, nonlinear interactions and estimate energy transfers to investigate energy flows within the spectra. Energy flows are identified by dividing transfers into four types of triad interactions, with triads including one, two, or three infragravity-frequency components, and triad interactions solely between short-wave frequencies. In the shoaling zone, the energy transfers are generally from the spectral peak to its higher harmonics and to infragravity frequencies. While receiving net energy, infragravity waves participate in interactions that spread energy of the short-wave peaks to adjacent frequencies, thereby creating a broader energy spectrum. In the short-wave surf zone, infragravity-infragravity interactions develop, and close to shore, they dominate the interactions. Nonlinear energy fluxes are compared to gradients in total energy flux and are observed to balance nearly completely. Overall, energy losses at both infragravity and short-wave frequencies can largely be explained by a cascade of nonlinear energy transfers to high frequencies (say, f . 1.5 Hz) where the energy is presumably dissipated. Infragravity-infragravity interactions seem to induce higher harmonics that allow for shape transformation of the infragravity wave to asymmetric. The largest decrease in infragravity wave height occurs close to the shore, where infragravity-infragravity interactions dominate and where the infragravity wave is asymmetric, suggesting wave breaking to be the dominant mechanism of infragravity wave dissipation.
[1] Ionospheric effects of energetic electron precipitation induced by controlled injection of VLF signals from a ground based transmitter are observed via subionospheric VLF remote sensing. The 21.4 kHz NPM transmitter in Lualualei, Hawaii is keyed ON-OFF in 30 minute periodic sequences. The same periodicity is observed in the amplitude and phase of the sub ionospherically propagating signals of the 24.8 kHz NLK (Jim Creek, Washington) and 25.2 kHz NLM (LaMoure, North Dakota) transmitters measured at Midway Island. Periodic perturbations of the NLK signal observed at Palmer, Antarctica suggest that energetic electrons scattered at longitudes of NPM continue to be precipitated into the atmosphere as they drift toward the South Atlantic Anomaly. Utilizing a model of the magnetospheric waveparticle interaction, ionospheric energy deposition, and subionospheric VLF propagation, the precipitated energy flux induced by the NPM transmitter is estimated to peak at L $ 2 and $ 1.6 Â 10 À4 ergs s À1 cm À2 . Citation: Inan,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.